Virtual Memory

Expanding Memory
Multiple Concurrent Processes
Virtual Memory

• In Virtual memory addresses used by a program are not those where data is actually stored!

• A translation takes virtual address used by the processor to the actual physical address in memory

• Allows program to address more memory than physically exists

• Allows separate processes that share the processor to use the same virtual addresses
 – Only one process active at a time
 – Actual memory for different processes are stored in different physical locations

• Information may be stored in main memory or on disk
Virtual Memory Pages

• Unit of storage is a page
 – Typically 4 KB-1 GB

• Low order bits determine location within page
 – e.g. 4 KB page needs 12 bits for offset within page

• Remainder of virtual address is the virtual page address
 – 36 bits for 48 bit addressing (upper 16 bits of address are not used in ARMv8) and 4 KB pages

• How do we find the actual information from a virtual address???
Page Table

- Each virtual address (high bits) maps to a physical address
- The mappings are kept in a page table indexed by the high bits of the virtual address
- 36 high bits (12 bits for offset) means 2^{36} table entries (for 4 KB pages)
- Each entry is the physical location of the page
 - 40 bit physical addresses, means 28 bit addresses for page
- Page table is stored in memory
- Page table register stores the start location of the page table in memory
In this example, physical memory is smaller than addressable virtual memory.
Page table

• Stored in memory (maybe virtual memory)
 – Page table for OS in main memory

• Indexed by high bits of virtual address
 – Added to page table register

• Contains physical address (high bits) and condition bits
 – Valid bit indicates in physical memory
 – Otherwise stored on secondary memory (hard disk or flash)
Find a physical address

1. Add high bits of virtual address to page table register value
2. Find that location in memory
3. Check valid bit
 - If set, then read high bits of physical memory, append offset
 - If not set, then page fault!
4. If found in physical memory, access
5. If page fault, throw exception for OS to handle
 - For hit, two memory accesses needed!!
 - Can we do better??
Translation Look-aside Buffer

- TLB is a cache for page table entries
- High order (index) virtual address bits access TLB
 - If fully associative, all bits in tag
 - If partially associative, bits split between index (low) and tag (high)
 - Holds physical address
- If virtual address is in TLB
 - Get physical address – single memory access for info
 - If not, go to page table
Multi-level page tables require more memory accesses to get virtual to physical translation, so TLB is even more important!
TLB Translation Look-aside buffer

• 16 – 512 entries
• Hit – 0.5 to 1.0 clock cycles
 – Hit gives physical address for memory access
• Miss penalty – 10 - 100 clock cycles
 – For page table look-up in memory
 – Causes exception – OS handles miss
 – May mean page fault!
TLB organization

- **Before Cache**
 - Cache uses physical addresses

- **After Cache**
 - Cache uses virtual addresses

- **Mixed**
 - Virtual index but physical tag

- **Example: Intrinsity TLB before Cache**
Intrinsity FastMATH TLB
Sequence for TLB and Cache

Assume Physical Addressed Cache

1. Memory address goes to TLB
2. If TLB hit, take physical address to Cache
3. If Cache hit, return information
 - If write, mark cache entry dirty
4. If Cache miss, start memory access
 - Use physical address from TLB
 - With TLB hit, must be in memory
5. If TLB miss
 - Exception – control to OS (using TLB ex-address)
TLB Miss exception -- OS

1. Go to page table in memory, load line into TLB
2. Restart process to continue with TLB access
3. If valid, TLB hit, continue to cache access
4. If TLB entry is *not valid*, this is a page fault exception
Page Fault Exception

1. Save complete state of process
 • See table 5.28 in book

2. Look up PTE and find disk location

3. Choose physical page to replace
 • If dirty, must be written to disk

4. Start read to bring referenced page into physical memory
 • Millions of processor clock cycles, so

5. Start an alternate process
Page Fault Exception Completion

• If writing dirty page, interrupt at completion
 – This is an exception, OS takes over, starts read of the page to be loaded, restarts alternate process

• When page is loaded, interrupt
 – This is an exception, OS takes over,
 – Restores state of original process
 – Original process restarts with instruction that caused exception.
Virtual memory and Protection

• Multiple processes and OS have same virtual addresses
• Must keep user processes from messing with others memory, especially OS
• Key is two-fold
 – Processor mode: user or supervisor (kernel, executive)
 – Only OS in supervisor mode can *write* critical elements
 • user/super mode bit, page table pointer, TLB
• Transfer from mode to mode
 – e.g. sys calls and exceptions invoke supervisor mode
 – OS return to user process invokes user mode
ARM Cortex A53 Pipeline

Instruction Fetch & Predict
- AGU & TLB
- Instruction Cache
- Hybrid Predictor
- Indirect Predictor

Instruction Decode
- Early Decode
- 13 Entry Instruction Queue
- Main Decode
- Late Decode

Floating Point Execute
- NEON Register File
- Mul/Div/Sqrt Pipe
- ALU Pipe

Integer Execute & Load/Store
- Issue
- Integer Register File
- ALU Pipe 0
- ALU Pipe 1
- MAC Pipe
- Divide Pipe
- Load Pipe
- Store Pipe
- Writeback