Lab 04: Satisfiability Solver, Part 1
COSC 290 - Fall ’23

<table>
<thead>
<tr>
<th>Starter File(s)</th>
<th>L04_starter.zip (6 .java files)</th>
</tr>
</thead>
</table>
| Submission | Upload only the following file(s) to Moodle:
• CNFProposition.java
• Lab04Tester.java
• Literal.java
• VariableAssignment.java |
| Due Date | This lab is due:
• Mon, Oct 2nd by 10PM for lab A (which meets on Tues)
• Tues, Oct 3rd by 10PM for lab C (which meets on Wed)
• Wed, Oct 4th by 10PM for lab D (which meets on Thurs) |

1 Overview

In this lab, you will continue to sharpen your recursive design skills while gaining more practice with propositional logic – namely conjunctive normal form and satisfiability.

For this assignment, you will implement an algorithm which accepts a proposition written in Conjunctive Normal Form (CNF) and returns true if there exists a satisfying assignment for the proposition or false if the proposition is unsatisfiable (more on what this means below).

This is a very important problem – some might say the most important problem in all of CS! Many real-world problems can cast as CNF satisfiability problems; for example, it is used to check Paris Metro railway system for bugs.

2 Satisfiability Algorithm

Below is an explanation of satisfiability as well as high-level description of the algorithm you must implement.

2.1 Variable Assignments and Satisfiability

Imagine we have a proposition; for example:

\[(p \lor \neg q \lor \neg r)\]

Next, we will apply a variable assignment to this proposition. A variable assignment is a collection of variables and their respective values, true or false (imagine a single row of a truth table).

For example:

\[p \rightarrow \text{False}, \ q \rightarrow \text{True}, \ r \rightarrow \text{False}\]

If we were to apply the above variable assignment to the proposition, the proposition would evaluate to true, as we’d have \((\text{False} \lor \neg \text{True} \lor \neg \text{False})\) which is ultimately \((\text{False} \lor \text{False} \lor \text{True})\) and thus \((\text{True})\).

Satisfiability is a means of expressing whether it is possible for a given proposition to be evaluated as True. In terms of satisfiability, a given proposition is:

• satisfiable if there exists at least one variable assignment for which the proposition evaluates to True
• unsatisfiable if there exists no variable assignments for which the proposition evaluates to True
2.2 Our Algorithm

You will be writing the algorithm to determine satisfiability of a proposition by searching every possible variable assignment to determine if there are any permutation of variable values for which the proposition evaluates True.

To understand this algorithm, let's define isSatisfiableHelper as follows: This function takes a proposition \(\varphi \) and a variable assignment \(T \) and returns True when the proposition can be satisfied using assignment of \(T \).

Note that \(T \) may be an incomplete assignment, meaning not every variable in \(\varphi \) has an assignment. This function is going to return whether or not \(\varphi \) is satisfiable given the provided variable assignment, and any combination of values for the unassigned variables.

Here are some example inputs and outputs:

- **Input**: \(\varphi := (p \lor q) \land (\neg q) \)
 \(M := p \rightarrow True, \quad q \rightarrow False \)
 Output: True because \(\varphi \) evaluates to True given the assignments under \(T \)

- **Input**: \(\varphi := (p \lor \neg q \lor \neg r) \)
 \(M := p \rightarrow False, \quad q \rightarrow True \)
 Output: True because there exists a variable assignment given \(T \)'s partial assignment where \(\varphi \) evaluates True (if \(r \rightarrow False \))

- **Input**: \(\varphi := (p \lor \neg q \lor \neg r) \)
 \(M := p \rightarrow False \)
 Output: True for same reasons as above (\(\varphi \) is True if \(q \rightarrow False \) and/or \(r \rightarrow False \))

- **Input**: \(\varphi := (p \lor q) \land (\neg q) \land (\neg r) \)
 \(M := p \rightarrow False \)
 Output: False. Although \(\varphi \) is satisfiable in general, it is not under this variable assignment, regardless of how the remaining variables are assigned

We can implement isSatisfiableHelper using recursion!

The basic idea is this: suppose \(p \) is a variable that appears in the proposition \(\varphi \) but has not yet been assigned a value in the variable assignment \(T \). Let's try setting \(p \) to True and seeing if the proposition is satisfiable.

By assigning \(p \) to True, we have made the problem "smaller": there is one fewer variable to consider. After we assign \(p \) to True, we can make a recursive call. If assigning \(p \) to True does not yield a satisfying assignment, then we set \(p \) to False and see if it's satisfiable (with another recursive call). If we try setting \(p \) to both True and False, and neither yields a satisfying assignment, then the proposition must be unsatisfiable.

The base case occurs when the variable assignment is "complete", meaning every variable in \(\varphi \) has been assigned a value in variable assignment \(T \). In this case, check whether \(\varphi \) evaluates to True under the assignment. If it does, you've found a satisfying assignment! If not, this particular variable assignment does not lead to a satisfying result, so return False.

2.3 Pseudocode Implementation

On the next page is a pseudocode implementation of our above recursive algorithm:
def isSatisfiableHelper(proposition, variableAssignment):
 # *** base case ***
 # check the variable assignment: have all variables been assigned?
 if variableAssignment has no unassigned variables:
 if proposition evaluates to true given the assignment:
 # you have found a satisfying variable assignment!
 return True
 else:
 # this particular assignment does not satisfy the proposition
 return False
 # *** recursive case ***
 var = pick one of variable assignment's unassigned variables

 # try setting var to True, see if this leads a satisfying assignment
 update variable assignment, assigning var to True
 if isSatisfiableHelper(proposition, variableAssignment):
 return True

 # try setting var to False
 update variable assignment, assigning var to False
 if isSatisfiableHelper(proposition, variableAssignment):
 return True

 # looks like we don't have a satisfying variable assignment
 update variable assignment, unassign var
 return False # proposition is unsatisfiable

2.4 Provided Code

You are provided with six starter files (five classes plus the tester file). Your first step should be to familiarize yourself with each of these classes, as well as their attribute and responsibilities.

A high-level description of the (non-tester) classes is provided below:

- **Variable.java**: a single variable of an atomic proposition, such as p
- **Literal.java**: a literal in a boolean proposition. For example, in the proposition $(p \lor \neg q) \land (\neg p \lor r)$, there are four literals: $p, \neg p, \neg q,$ and r.
- **Clause.java**: a single clause in a CNF proposition, such as: $(p \lor \neg q)$
- **CNFProposition.java**: a proposition in conjunctive normal form (i.e. a conjunction of clauses). Also contains a method to determine satisfiability.
- **VariableAssignment.java**: an assignment of truth values to variables, as described in the Section 2.2.

3 Your Task

Your task is to finish the implementation of the satisfiability checker in the provided code. To do this, you will ultimately implement two functions. Below is the recommended order to complete this task:

1. Review the provided code. Become comfortable with what each class represents and their public methods (you don’t necessarily need to understand how each works).
2. Search the provided code for functions throwing an "implement me" exception and implement them. There are four of these functions in total, but ignore isSatisfiableHelper for now.
3. Finally, implement the satisfiableHelper method in CNFProposition based on the provided pseudocode above. This function is the recursive helper to isSatisfiable().
4 Pre-Lab Questions

After reading this document and provided code, answer the following before we meet (we will discuss in-lab):

1. For each of the prompts below, fill in the blank with one of the following: [ZERO / AT LEAST ONE / ALL]
 - A CNF proposition evaluates to True if ______________ clause(s) evaluate to True
 - A CNF proposition evaluates to False if ______________ clause(s) evaluate to False
 - A disjunct of literals evaluates to True if ______________ literal(s) evaluate to True
 - A disjunct of literals evaluates to False if ______________ literal(s) evaluate to True

2. Suppose we have the variables myClause and myProp which reference Clause and CNFProposition objects representing the following:
 - Clause myClause = (p ∨ ¬q ∨ ¬r)
 - CNFProposition myProp = (p ∨ q) ∧ (¬q) ∧ (r ∨ ¬p)
 What would be output by the following? (assume all "implement me!" functions are properly implemented):
 - myProp.getClauses().size()?
 - myProp.getAllVariables().size()?
 - myClause.getLiterals().size()?

5 Submission

See the top of this document for your lab section’s due date/time. When uploading your submission to Moodle submit only the files listed below:

- CNFProposition.java
- Lab04Tester.java
- VariableAssignment.java
- Literal.java