1 Overview

In this lab, you will implement two variations of an algorithm that computes the transitive closure of a relation, represented by an adjacency matrix (a 2 dimensional array of booleans). Lastly, you will experiment with both algorithms and compare their time complexities.

2 Transitive Closure Refresher

Let A be a finite set of Twitter users $= \{Abby, Barry, Carla, Diego, Ellen\}$.

Let $R \subseteq A \times A$ be a binary relation on A, representing users in A who follow other users in A.

In other words, R is a set of ordered pairs, whereas (j,k) implies that user j follows user k. Keep in mind, follows on Twitter are non-communicative; if j follows k, that doesn’t necessarily mean that k follows j.

Let’s say $R := \{(Abby, Barry), (Barry, Ellen), (Diego, Carla), (Diego, Ellen), (Ellen, Carla)\}$, visualized below:

![Diagram](diagram.png)

We could also depict R as a boolean matrix (i.e. our 2D array) where if $arr[i][j]$ is true, then i follows j on Twitter:

```
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>B</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>D</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>E</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
```
In order for our relation R to be transitive, for all i, j, and k in A, if (i, j) exists in R, and (j, k) exists in R, then (i, k) must also exist in R. In the context of our example, if Twitter user i follows user j, and j follows user k, then i must also follow k in order for the relation to be transitive.

Another way to think about this is in the context of the above graph: if any node on the graph can be reached from another node with a distance of > 1, it must also be able to be reached with a distance of 1. R is not transitive because, Ellen can be reached from Abby with a distance of 2 (traversing Abby \rightarrow Barry \rightarrow Ellen), but cannot be reached with a distance of 1 (there is no direct connection from Abby to Ellen).

The Transitive Closure is a relation $R^+ \supseteq R$ that contains the minimum number of additional pairs required to make the relation transitive. Thus, the transitive closure of R would be:

$$R^+ := \{(Abby, Barry),(Abby, Carla),(Abby, Ellen),(Barry, Ellen),(Barry, Carla),(Diego, Carla),(Diego, Ellen),(Ellen, Carla)\}$$

The graph and boolean matrix of R^+ would be as follows:

![Graph](image)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>B</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>D</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>E</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

3 Your Task

Your goal for this lab is to write two variations of a function which generates the transitive closure of a given relation. Relations will be represented with a two dimensional boolean array similar to the matrixes shown in the examples above. First, spend some time familiarizing yourself with the provided code and looking over the main method in Relation.java.

Once you have implemented your transitive closure algorithm, you are required to create and run two test relations, and analyze the time complexities of your two algorithms.

3.1 Implementation

There are four functions you need to implement, detailed on the following page:
1. **union**: returns a new relation matrix T that is the *union* of the argument relations R and S. As a refresher, this means if pair (i, j) exists in R and/or S, then it must exist in T.

2. **compose**: returns a new relation matrix T that is the *composition* of the argument relations R and S (denoted as $R \circ S$). As a refresher, that means T contains all pairs (i, k) such that there is a j in A for which (i, j) exists in S and (j, k) exists in R.

3. **getTransitiveClosure**: lastly, you will implement two different functions which compute the transitive closure of a relation. Both functions return a new relation matrix R^+ that is the transitive closure of the argument relation R, as described above. Additionally, **neither function should modify the argument relation**.

Recall from the textbook that, given the relation R (ex: collection of "follow" pairs) on the finite set A (ex: Twitter users), $R^+ = R \cup R^2 \cup R^3 \cup ... \cup R^n$ where n equals the cardinality of A. Also recall that we can calculate R^k by composing R with itself k times, i.e.: $R^k := R \circ R \circ ... \circ R$.

Given this logic, implement `getTransitiveClosure` following the pseudo-code representation of calculating R^+ described below:

(a) Initialize $T := R$
(b) Update T to be union of itself with the composition of R. In other words, $T := T \cup (R \circ T)$
(c) Repeat Step b until one of the following occurs:
 - Step B has been repeated $(n - 1)$ times, where n equals the number of vertices in R
 - or, T is unchanged after an execution of Step b.

4. **getTransitiveClosureWarshalls**: for this second transitive closure function, implement it using *Warshall’s algorithm* (a more optimized solution than the previous function).

Recall from your lecture the following pseudocode and analysis of Warshall’s algorithm:

```
ALGORITHM Warshall(A[1..n, 1..n])
    //Implements Warshall’s algorithm for computing the transitive closure
    //Input: The adjacency matrix A of a digraph with n vertices
    //Output: The transitive closure of the digraph
    R(0) ← A
    for k ← 1 to n do
        for i ← 1 to n do
            for j ← 1 to n do
                R(k)[i, j] ← R(k-1)[i, j] or (R(k-1)[i, k] and R(k-1)[k, j])
    return R(n)
```

4 **Test Relations**

In the `main` of your `Lab10Tester.java`, you must document the following:

- **Minimally**, you must create, test, and document the following two test cases to run against your two transitive closure functions:
 1. a relation which contains a *chain* of seven or more edges, example: `<a, b>, <b, c>, <c, d>...` and so on. Each node should have 0 or 1 edges, and 0 or 1 other nodes pointing to it. If abstracted as a graph, you should be able to visualize this relation as a straight line.
2. a relation with five or more nodes with no loop in the graph (meaning no \(<k, k> \) for any node \(k \) in its ordered pairs), but has at least one such loop \(<k, k> \) in its transitive closure.

• In comments at the bottom of your main, analyze the time complexities and describe asymptotic bounds (best and worst case behaviors) of both getTransitiveClosure and getTransitiveClosureWarshalls along with a very brief explanation of your answers.

5 Pre-Lab Questions

After reading this document and provided code, answer the following before we meet (we will discuss in-lab):

1. Suppose we have relations, \(R \) and \(S \), each stored as a two-dimensional boolean arrays Let \(n_1 \) and \(n_2 \) represent the lengths of the first and second dimensions of \(R \) respectively, and \(n_3 \) and \(n_4 \) the dimensions of \(S \).

Are the following statements true or false per the functions you will implement in Relations.java?:

 (a) To use the union function to create \(R \cup S \), \(n_1 == n_3 \) and \(n_2 == n_4 \) must be true.
 (b) To use the union function to create \(R \cup S \), \(n_1 == n_2 \) and \(n_3 == n_4 \) must be true.
 (c) To use the composition function to create \(R \circ S \), \(n_1 == n_3 \) must be true.
 (d) To use the composition function to create \(R \circ S \), \(n_2 == n_3 \) must be true.

2. Is the relation on the following page transitive? If not, what edges are missing?

3. Suppose we have a non-transitive relation \(R \) and its transitive closure \(R^* \), represented by a two-dimensional boolean arrays \(r_1 \) and \(r_2 \), respectively.

Is it possible that there are one or more indices \(i \) such that \(r_1[i][i] == false \) and \(r_2[i][i] == true \)? If so, can you come up with an example relation?

6 Submission

See the top of this document for the lab’s due date and time. When submitting your code, include only the files listed below:

• Relations.java
• Lab10Tester.java