Lab 10: Transitive Closures
COSC 290 - Fall ‘21

<table>
<thead>
<tr>
<th>Starter File(s)</th>
<th>Lab10.zip (2 .java files)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submission</td>
<td>Upload only the following file(s) to Moodle:</td>
</tr>
<tr>
<td></td>
<td>• Relations.java</td>
</tr>
<tr>
<td></td>
<td>• Lab10Tester.java</td>
</tr>
<tr>
<td>Due Date</td>
<td>Monday, November 29th at 11:59PM for all lab sections</td>
</tr>
</tbody>
</table>

1 Overview

For our final lab, you will implement an algorithm that computes the transitive closure of a relation, represented by a 2 dimensional array of booleans.

2 Transitive Closure Refresher

Let A be a finite set of Twitter users = \{Abby, Barry, Carla, Diego, Ellen\}.

Let $R \subseteq A \times A$ be a binary relation on A, representing users in A who follow other users in A.

In other words, R is a set of ordered pairs, whereas (j,k) implies that user j follows user k. Keep in mind, follows on Twitter are non-communicative; if j follows k, that doesn’t necessarily mean that k follows j.

Let’s say $R := \{(Abby, Barry), (Barry, Ellen), (Diego, Carla), (Diego, Ellen), (Ellen, Carla)\}$, visualized below:

We could also depict R as a boolean matrix (i.e. our 2D array) where if $\text{arr}[i][j]$ is true, then i follows j on Twitter:
In order for our relation \(R \) to be transitive, for all \(i, j, \) and \(k \) in \(A \), if \((i, j) \) exists in \(R \), and \((j, k) \) exists in \(R \), then \((i, k) \) must also exist in \(R \). In the context of our example, if Twitter user \(i \) follows user \(j \), and \(j \) follows user \(k \), then \(i \) must also follow \(k \) in order for the relation to be transitive.

Another way to think about this is in the context of the above graph: if any node on the graph can be reached from another node with a distance of \(> 1 \), it must also be able to be reached with a distance of \(1 \). \(R \) is not transitive because, Ellen can be reached from Abby with a distance of \(2 \) (traversing Abby \(\rightarrow \) Barry \(\rightarrow \) Ellen), but cannot be reached with a distance of \(1 \) (there is no direct connection from Abby to Ellen).

The Transitive Closure is a relation \(R^+ \supseteq R \) that contains the minimum number of additional pairs required to make the relation transitive. Thus, the transitive closure of \(R \) would be:

\[R^+ := \{(Abby, Barry),(Abby, Carla),(Abby, Ellen),(Barry, Ellen),(Barry, Carla),(Diego, Carla),(Diego, Ellen),(Ellen, Carla)\} \]

The graph and boolean matrix of \(R^+ \) would be as follows:

3 Your Task

Your goal for this lab is to write a function which generates the transitive closure of a given relation. Relations will be represented with a two dimensional boolean array similar to the matrixes shown in the examples above. First, spend some time familiarizing yourself with the provided code and looking over the main method in Relation.java.

Once you have implemented your transitive closure algorithm, you are required to create and run two test relations as described below.

3.1 Implementation

There are three functions you need to implement, detailed on the following page:
1. **union**: returns a new relation matrix T that is the **union** of the argument relations R and S. As a refresher, this means if pair (i, j) exists in R and/or S, then it must exist in T.

2. **compose**: returns a new relation matrix T that is the **composition** of the argument relations R and S (denoted as $R \circ S$). As a refresher, that means T contains all pairs (i, k) such that there is a j in A for which (i, j) exists in S and (j, k) exists in R.

3. **getTransitiveClosure**: returns a new relation matrix R^+ that is the transitive closure of the argument relation R, as described above.

Recall from the textbook that, given the relation R (ex: collection of "follow" pairs) on the finite set A (ex: Twitter users), $R^+ = R \cup R^2 \cup R^3 \cup ... \cup R^n$ where n equals the cardinality of A. Also recall that we can calculate R^k by composing R with itself k times, i.e.: $R^k := R \circ R \circ ... \circ R$.

A pseudo-code representation of calculating R^+ would be as follows:

(a) Initialize $T := R$
(b) Update T to be union of itself with the composition of R. In other words, $T := T \cup (R \circ T)$
(c) Step b will need to be repeated at most $(n - 1)$ times, where $n = |A|$

4 Test Relations

In your **Lab10Tester.java**, you must **minimally** create, test, and document your transitive closure algorithm with the following two relations:

1. a relation which contains a **chain** of **seven** or more edges, example: $<a, b>, <b, c>, <c, d,...$ and so on. Each node should have 0 or 1 edges, and 0 or 1 other nodes pointing to it. If abstracted as a graph, you should be able to visualize this relation as a straight line.

2. a relation with **five** or more nodes with no loop in the graph (meaning no $<k, k>$ for any node k in its ordered pairs), but has at least **one** such loop $(<k, k>)$ in its transitive closure.

5 Pre-Lab Questions

After reading this document and provided code, answer the following **before** we meet (we will discuss in-lab):

1. Suppose we have relations, R and S, each stored as a two-dimensional boolean arrays Let n_1 and n_2 represent the lengths of the first and second dimensions of R respectively, and n_3 and n_4 the dimensions of S.

 Are the following statements **true** or **false** per the functions you will implement in **Relations.java**?:

 (a) To use the **union** function to create $R \cup S$, $n_1 == n_3$ and $n_2 == n_4$ must be **true**.

 (b) To use the **union** function to create $R \cup S$, $n_1 == n_2$ and $n_3 == n_4$ must be **true**.

 (c) To use the **composition** function to create $R \circ S$, $n_1 == n_3$ must be **true**.

 (d) To use the **composition** function to create $R \circ S$, $n_2 == n_3$ must be **true**.

2. Is the relation on the following page **transitive**? If not, what edges are missing?
3. Suppose we have a non-transitive relation R and its transitive closure R^+, represented by a two-dimensional boolean arrays $r1$ and $r2$, respectively.

Is it possible that there are one or more indices i such that $r1[i][i] == false$ and $r2[i][i] == true$? If so, can you come up with an example relation?

6 Submission

See the top of this document for the lab’s due date and time. When submitting your code, include only the files listed below:

- Relations.java
- Lab10Tester.java