
COSC 101 Handout #29: Recursion, Part 1 Spring 2016

1 Recursion

Definition: recursion is an algorithmic technique where a function, in order to accomplish a task,
calls itself with some part of the task.

Structure: every recursive solution involves two major parts:

(1) base case, where the problem is simple enough to be solved directly

(2) recursive case, which has three components

(a) divide problem into one or more simpler or smaller parts of the problem,

(b) call the function (recursively) on at least one part, and

(c) combine the solutions of the parts into a solution for the problem

Sometimes there is more than one base case. Sometimes there is more than one recursive case.

2 Downup

The function downup takes a string and prints out a pattern. For example, downup(’howdy’) prints
this:

howdy

howd

how

ho

h

ho

how

howd

howdy

The pattern can be described in a self-referential (or recursive) way. The downup pattern for
“howdy” is the word “howdy,” followed by the downup pattern for “howd,” followed by “howdy”
again.

Here is a recursive approach that prints the parts of the pattern as it goes.

def downup(s):

if len(s) <= 1:
print s

else:

print s

downup(s[:−1])

print s

1 of 2



COSC 101 Handout #29: Recursion, Part 1 Spring 2016

Here is a visualization of what happens when downup is called on ’hey!’. Indentation is used to
show the levels of recursion.

downup(’hey!’)

print ’hey!’

downup(’hey’)

print ’hey’

downup(’he’)

print ’he’

downup(’h’)

print ’h’

print ’he’

print ’hey’

print ’hey!’

Here is an alternative approach, also recursive, that returns a string that contains the entire downup
pattern. The reason for showing you this second approach is that the structure of this code very
closely matches the structure of recursive solution outlined at the beginning of this handout.

def downup(s):

if len(s) <= 1: # (1) base case
return s

else: # (2) recursive case
smaller = s[:−1] # (a) divide
result = downup(smaller) # (b) cal l
sandwich = s + ’\n’ + result + ’\n’ + s # (c) combine
return sandwich

3 Factorial

Here is a recursive approach for calculating the factorial of a number. The factorial of 4 is 4! =
4 × 3 × 2 × 1 = 24. In general, the factorial of n! = n × (n − 1) × (n − 2) × · · · × 2 × 1.

The recursive “insight” is to see that n! = n × (n − 1)! except when n = 1 in which case 1! = 1.

def fact(n):

’’’(int) −> int
Returns n! where n is expected to be a

positive integer.

’’’

if n == 1: # (1) base case
return 1

else: # (2) recursive case
result = fact(n−1) # (a) divide and (b) cal l
return n ∗ result # (c) combine

Definition of recursion adapted from NIST, http://xlinux.nist.gov/dads//HTML/recursion.html. The downup
example adapted from Brian Harvey.

2 of 2


