
COSC 101 Extra Practice Problems Spring 2016

Extra Practice Problems

The final exam will have one question that is longer (and worth more points) than the typical
programming questions you’ve seen on the midterms. This reflects the fact that after working
on homework 10, 11 and especially 12, you have developed your skills in writing more complex
programs that involve multiple functions.

Here are some “bigger” practice problems to consider. These are challenging but you are strongly
encouraged to practice them.

1. You are given a list of dates of birthdays. Each date is one of two formats: year month day as in
'2014/12/31' or month, day, year as in '12/31/2014'. Write a function build birthday dictionary
that takes in such a list and returns a birthday dictionary of a particular form. The keys are
month names (you can use three letter abbreviations: “Jan,” “Feb,” etc.). The values are dic-
tionaries. These inner dictionaries have days for keys and each value is a list of years.

Example:

>>> dates = [' 1975/12/17 ' , ' 1976/12/17 ' ,
' 1944/12/11 ' , ' 1974/03/27 ']

>>> build birthday dictionary(dates)
{ ' Dec ' : { ' 11 ' : [' 1944 '],

' 17 ' : [' 1975 ' , ' 1976 ']},
' Mar ' : { ' 27 ' : [' 1974 '] } }

Hint: assume you have a list called MONTHS that looks like this:

MONTHS = [' Jan ' , ' Feb ' , ' Mar ' , ' Apr ' , ' May ' ,
' Jun ' , ' Jul ' , ' Aug ' , ' Sep ' , ' Oct ' ,
' Nov ' , ' Dec ']

Solution:

MONTHS = [' Jan ' , ' Feb ' , ' Mar ' , ' Apr ' , ' May ' , ' Jun ' , ' Jul ' , ' Aug ' , ' Sep ' , ' Oct ' , ' Nov ' , ' Dec ']

def extract parts(date):

parts = date.split(' / ')
if len(parts[0]) == 4:

year = parts[0]

month = parts[1]

day = parts[2]

else:

month = parts[0]

day = parts[1]

year = parts[2]

return [month, day, year]

1 of 4

COSC 101 Extra Practice Problems Spring 2016

def update bday(m, d, y, bdays):

if m not in bdays:

bdays[m] = { }

if d not in bdays[m]:

bdays[m][d] = []

if y not in bdays[m][d]:

bdays[m][d] += [y]

def build birthday dictionary(dates):

' ' ' (list of str) −> dict
Expects a list containing

' ' '
bdays = { }

for date in dates:

m, d, y = extract parts(date)

m = MONTHS[int(m)−1]

update bday(m, d, y, bdays)

return bdays

dates = [' 1975/12/17 ' , ' 1976/12/17 ' ,
' 1944/12/11 ' , ' 1974/03/27 ']

print build birthday dictionary(dates)

2. This question has two parts:

i. Write a function dna squish that takes a sequence of DNA (a string of A, C, G, T) and
“compresses” it as follows. Subsequences of the same character are replaced to a single
copy of the character followed by the number of times that character occurs. For example,
'ACCCGGCAAAAA' would be compressed to 'A1 C3 G2 C1 A5'.

The resulting string is compressed if the original DNA string contains many repeated
characters.

ii. Write a function dna unsquish that takes as input the string produced by the previous
problem and reconstructs the original dna string. On input 'A1 C3 G2 C1 A5', it returns
'ACCCGGCAAAAA'.

iii. Challenge edition: do not put spaces between the groups when squishing. When unsquish-
ing, make sure your program works even when a group is 10 or larger, e.g., 'C3A10C1'

2 of 4

COSC 101 Extra Practice Problems Spring 2016

would produce 'CCCAAAAAAAAAAC'

Solution:

def dna squish(dna):

i = 0

squish = []

while i < len(dna):
curr ch = dna[i]

count = 0

while i < len(dna) and dna[i] == curr ch:
count += 1

i += 1

squish += [curr ch + str(count)]

return ' ' .join(squish)

def dna squish v2(dna):

i = 0

squish = []

dna += ' X ' # neat t r ick : add sent inel to end
makes code a bi t simpler

while dna[i] != ' X ' :
curr ch = dna[i]

count = 0

while dna[i] == curr ch:

count += 1

i += 1

squish += [curr ch + str(count)]

return ' ' .join(squish)

def dna unsquish(squished):

dna = ' '
groups = squished.split()

for group in groups:

ch = group[0]

3 of 4

COSC 101 Extra Practice Problems Spring 2016

count = int(group[1:])

dna += ch * count
return dna

def dna unsquish challenge(squished):

expects squished string without spaces : l ike 'A13G2T3G2 '
dna = ' '
i = 0

while i < len(squished):
ch = squished[i]

print ' ch ' , ch
i += 1

count = ' '
while i < len(squished) and squished[i].isdigit():

count += squished[i]

i += 1

print ' count ' , count
count = int(count)

dna += ch * count
return dna

print dna unsquish challenge(' C3A10C1 ')

4 of 4

