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Introductory Statement 

Our goal is to design and implement a game that represents a hero(character) playing on 
the rugby ‘pitch’, or field. The objective is to catch rugby balls falling from the sky while trying 
to prevent the ball from falling on children who are running around the field.  

The game will consist of 7 levels, at the end of each level, the user will choose a new 
hero from the bench consisting of 6 unique rugby players. Each player will have a different 
jersey as well as skill set (speed, strength, response time, etc.). A level is passed when a player 
earns 13 points: 1 point is earned for catching a ball, 2 points are earned for saving a child. A 
level is failed if a child is hit 3 times with the ball. If a level is failed, the user must repeat it to 
continue on to another level.  

Each level will progressively become more difficult. Elements to add to the difficulty are 
a more complex path of the child, more children added, increase in ball speed, and increase in 
number of balls. 

The key user interaction is the user controlling the hero’s movements along the plane 
(pitch). The user will also control the hero’s ability to push the child, saving them from the ball. 
The user will also be able to click to choose each player at the beginning of the level.  

The hero will be modeled with a series of transformed cubes plus a sphere for a head. The 
child will use the same model at a smaller scale. The character’s physical traits can be stored in 
an object which will determine their speed, strength, and texture (appearance). The players on 
the bench will be 2D elements, but each girl will look differently as explained above. 

In designing the project, Allegra will design the characters, trees, and uprights (3D 
modeling) and textures (2D). Anna will handle the game logic and animation. We will 
collaborate on pulling both aspects into the plane as well as handling collisions, scoring, 
character changes, as well as any other elements that come up. We also plan on aiding each other 
when arriving at difficulties in our respective parts.  
 
Technical Outline 
 

1.  Falling balls: ​The balls will fall in a vertical line. Their x and z values will not change as 
they fall, so only their y values will have to be updated. We will be able to tell if the hero 
can catch the ball (or if a kid will be hit) by comparing x and z values, then see if the 
height of the person is high enough to match the falling y value of the ball. 

2. Moving kids​: The kids’ y values will not change, however their x and z values will. They 
will run around the field randomly but adhering to a specific behavior. For example , Kid 
1 might have a “running radius” of 10 units but a speed of 10, while Kid 2 will have a 



running radius of 20 but a speed of 5. We can implement this by using an animation 
keyframe track. [3] 

3. Collisions: ​There will be one collison, the hero and the children. The hero can push the 
kid out of the way of the ball if the collision radius of the hero gets close enough to touch 
the collision box of the child. We will implement an axis-aligned collision box to do this. 
[1]. 

4. Keyboard Events-​ Characters respond to keyboard events [9]. 
5. 2D updating scoreboard​: We will have a cartoon version of our coach acting as a 

live-updating scoreboard. We will keep an object containing the scores, and when they 
get updated (kid gets saved/catch a ball etc) the display will be redrawn. We can use an 
event dispatcher to alert the ‘scoreboard’ to changes in the game [4]. 

6. 3D Plane​: We will have the pitch be a large 3D plane. We can apply a texture to this to 
give it the color and lines of a rugby pitch.  

7. Physics engine​: implement an animation for when character collides with kid 
8. Clickable characters​: When the player loses, they get to choose the next player off the 

bench by clicking her. 
 
Objectives 
 

1. Scalable modeling with toon shading- ​Model hero and characters in a scalable design 
that allows for use of different textures and features. Use toon shading to a cartoon like 
style. [5] 

2. Shadows​ - Model shadows of falling balls using shadow mesh and shadow material from 
THREE.js [6] 

3. Animation- ​implement animation for game players to look realistic in actions. We can 
implement this by using an animated model with controls [8]. 

4. Plane- ​The plane will be up close to the near-z of the field of view. This will make it 
appear that the field takes up the whole horizontal view of the screen, when in reality it is 
not an infinite plane. The field of view will be fixed, so when the character moves 
around, the pitch stays in place. 

5. 3D Background​- randomly generate a treeline (in addition to our skybox) to give the 
horizon/background a little bit more interest. 

6. Texture- ​Apply textures to field, ball, and character models. Implement different textures 
for different characters. 

7. Skybox​: include a skybox with an image of what you would see from the field using a 
cube-map texture and a 360 image. [2] 

 



 
 

 
Sources 

1. https://learnopengl.com/In-Practice/2D-Game/Collisions/Collision-detection 
2. http://ogldev.atspace.co.uk/www/tutorial25/tutorial25.html 
3. https://threejs.org/docs/index.html#api/en/animation/tracks/VectorKeyframeTrack 
4. https://threejs.org/docs/index.html#api/en/core/EventDispatcher 
5. https://threejs.org/docs/#api/en/materials/MeshToonMaterial 
6. https://threejs.org/examples/?q=shadow#webgl_shadowmesh 
7. http://guillaumeblanc.github.io/ozz-animation/samples/blend/ 
8. https://stemkoski.github.io/Three.js/Model-Animation-Control.html 
9. https://stemkoski.github.io/Three.js/Keyboard.html 
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