Climbing the Hill

T
B
s
B
=
ESESE

Alex Rosenthal, Bryan Vaihinger, Tino Zinyama

Premise

e A platformer inspired by climbing
the Colgate hill

e 2D game logic, graphics made of
simple 3D shapes

e Adapt elements of colgate life into
game mechanics

e Vertical levels, goal is to reach the
very top

e Satisfying movement is vital

e Precise maneuverability, but not
too jarring

e Jumping is complicated

&
e The double jump adds a new

dimension to gameplay —

Modelling

Models are composed of simple
geometric shapes

Each model is divided into parts
that can be individually moved
Character designs communicate
ideas, minimum needed to
suggest features

Colors should feel Colgate-esque,
and stand out from background

P

Game Levels

e Adding levels should be easy and
should require minimal coding
e So we implemented a text based level

editing system IRERESERs
e FEach level is defined by a layout string
e Each character in the string maps to a &

ES AN Tk T T
game element

Sample Level

T

l--l-.l--l-'l-.-l- 0 o -

Level Editing

e Level editor reads the layout string and
creates objects in the scene accordingly

e Placement of game elements is
grid-based

e However, elements can have behaviours
that are not tied to the grid

Level Editing

All game elements created by the
level editor implement the same
interface

o init()

o update()

o onCollide()
The game doesn’t need to know
much about each game object
Each object specifies its own
behaviour

Level Progression

e |evels get harder as the game
progresses

e New enemies and obstacles are
introduced gradually

= B

[
Y
e
I “

e Raycasting vs. bounding boxes
e Physics only occur in two dimensions
e Objects could slip between casts

e F[alling through at high speeds

Collisions - Raycasting

checkDown = useMin(checkCol (hBoundingBox[2], dirVectors[2]
checkCol (hBoundingBox[3], dirVectors[2], 0, 2));

if (checkDown) {
land();
thi += 2-checkDown;

\ checkCol(pos, dir, near, far) {
ray new THREE.Raycaster(pos, dir.normalize(), near, far);

collisionResults = .intersectObjects(collidableMeshList);

- (collisionResults.length >) {

n collisionResults[@].

Collisions - Bounding Boxes

bject(levelElements[i].

rsectsBox(checkBox)){

levelElements[i].onCollide();

ew THREE.BoxHelper(thj

