
Geometric Displacement on Plane and Sphere

Elodie Fourquet∗ William Cowan† Stephen Mann‡

David R. Cheriton School of Computer Science

University of Waterloo

ABSTRACT

This paper describes a new algorithm for geometric displacement
mapping. Its key idea is that all occluded solutions for an eye ray
lie in two-dimensional manifolds perpendicular to the underlying
surface to which the height map is applied. The manifold depends
only on the eye position and surface geometry, and not on the height
field. A simple stepping algorithm, moving along the surface within
a manifold renders a curve of pixels to the view plane, which re-
duces height map rendering to a set of one-dimensional computa-
tions that can be done in parallel. The curves on the view plane for
two specific underlying manifolds, a plane and a sphere, are straight
lines. In this paper we focus on the specific geometry of simple un-
derlying surfaces for which the geometry is more intuitive and the
sampling of the rendered image direct.

Index Terms: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing Algorithms

1 INTRODUCTION

Texture mapping is an extremely successful modelling and render-
ing technique. We attribute this success to five reasons.

1. Texture mapping is inherently two-dimensional. Mapping a two
dimensional texture to a two-dimensional manifold is easy for
modellers to comprehend and for programmers and hardware
designers to implement.

2. Texture mapping separates potentially complex rendering of fine
detail into two parts. The first part is creating the texture. Com-
putationally expensive texture creation can be done off-line,
which is essential for photographing or scanning real world con-
tent and for drawn or painted content. The second part is ren-
dering the texture, which must be done on-line.

3. Textures give an appearance of three-dimensional detail, while
requiring geometric calculations that are simple. The underlying
surface, to which the texture is mapped, is geometrically simple
compared to the geometry the texture approximates.

4. Texture rendering algorithms evaluate each pixel independently
of the others, and are easy to parallelize.

5. And most important, texture mapping gives visually convincing
results in many applications.

Advantage 1 is particularly important because it makes rendering
textures independent of the content of the texture. These algorithms
are, in fact, rare examples of graphics algorithms that are truly real-
time, because they depend only on the number of texture pixels on

∗e-mail: efourque@cgl.uwaterloo.ca
†e-mail:wmcowan@cgl.uwaterloo.ca
‡e-mail:smann@uwaterloo.ca

Figure 1: Vertical section of a height map (red curve) applied to an
underlying surface (black curve). Three eye rays (arrows) are shown.
Two of them intersect the surface at a and c, and the height map at
a′ and c′. The third eye ray intersects the surface at b, but intersects
the height map three times, b′ being the desired intersection.

the view screen and on the number of texels in the texture, both of
which are bounded above.

The success of texture mapping quickly led to modifications and
extensions having similar advantages. Blinn introduced bump map-
ping [2], and Max fully exploited it to give an appearance of three
dimensionality in an animated scene by locating highlights cor-
rectly as lighting and viewpoint change, while retaining all the ad-
vantages of texture mapping [10]. Displacement mapping [3], also
known as height mapping, improves bump mapping to include self-
occlusion within the texture, and correct silhouettes at the bound-
aries of the texture. In doing so, however, displacement mapping
compromises some of the advantages of texture mapping.

This paper revisits the geometry of displacement mapping for
two simple underlying surfaces, mapping normal and height values
at each point and with respect to the eye and view plane location.
The objectives of reanalyzing the geometry is to find a mapping al-
gorithm for displacement that preserves as many of the identified
advantages of texture mapping as possible. The basic geometry
of displacement mapping is simple: the texture defines a surface
colour, a surface normal and a height over a finite domain. The
texture is applied to a finite region of an underlying surface, a sec-
tion of which is shown in Figure 1. We calculate the intersection
of eye rays with the underlying surface, (a and c), from which we
derive the intersection of the eye ray with the height field (a′ and
c′), which is usually offset from the intersection of the eye ray with
the surface. The colour and texture normal at the intersection, pro-
jected to the underlying surface along the surface normal, are used
for calculating the colour on the particular eye ray.

The principle is simple to understand, but intersections with the
displacement map are not easy to find in practice, especially when
an eye ray intersects an height field more than once, as does the
middle ray in Figure 1. The ray intersects the underlying surface
at b but intersects the height map three times. The closest non-
occluded intersection, b′, is the desired solution. These cases are
particularly important because they are the source of self-occlusion,
an important visual cue to the geometry of the surface.

Of course, finding the correct solution can be achieved by con-
structing the height-mapped surface as a three-dimensional object,



and applying three dimensional ray-surface intersection, choosing
the intersection closest to the eye. As discussed in Section 2, many
current algorithms rely on this approach, taking advantage of the
GPU to render at interactive rates. But, being inherently three
dimensional, these GPU methods lose the advantage 1 of texture
mapping, and sometimes advantage 3, while retaining advantage 4.
Other algorithms that guarantee the correct solution are incremen-
tal, retaining advantages 1 and 3 but losing advantage 4. Our goal is
to study the geometry of displacement mapping for two particular
surfaces, presented in Section 3, to understand better the opportuni-
ties and pitfalls in a novel geometrical approach to the height map
intersection problem.

Our observation is that the displacement map intersection prob-
lem can be solved as an ordered one dimensional problem on curves
passing through a particular point. Coherent stepping and sampling
provide the non-occluded intersection solution without making the
problem three dimensional, while remaining solvable in parallel
along different curves. To exploit this observation the following
three elements are needed:

• a stepping algorithm along the height map that finds the non-
occluded intersection,

• a mapping between samples on the view plane and their corre-
sponding points on the underlying surface, and

• a method to create a sampling pattern on curves in the view
plane that has uniform planar density.

Our examination of geometry leads to a natural algorithm, which
is the base case for all algorithms that step along the height map.
This algorithm is described in Section 4 with diagrams. An im-
plementation with the mathematical details for sampling and for
mappings between the view plane and both underlying surfaces,
the plane and the sphere, are described in Section 5. Result images
are presented and performance discussed in Section 6.

2 RENDERING ALGORITHMS FOR DISPLACEMENT MAPS

Displacement mapping was first suggested over two decades
ago [3] [12], but suffered from two drawbacks. Authoring content
for displacement mapping, by algorithm or artist, was costly. Map-
ping algorithms ran slowly, and without good content there was lit-
tle incentive to improve them. The advent of commercial 3D scan-
ners around 2000 solved the first problem. About the same time
GPUs began to surpass CPUs in terms of computing throughput.

Suddenly, a surfeit of real world height maps were available for
mapping, and GPUs with sufficient power to do many rendering op-
erations became available. Soon, GPU displacement mapping algo-
rithms appeared [6]. GPU capabilities have increased rapidly in the
last few years; at present they are able to ray-cast fairly complex
scenes in real-time. As a result ray-casting is the preferred method
for rendering displacement maps [13]. Ray casting on GPUs is usu-
ally done by stepping along the eye ray, and exhibits the usual prob-
lems of stepping algorithms [14]. Currently the state of the art in
GPU ray casting for displacement mapping uses sphere tracing [4],
an algorithm created for speeding up CPU intersection tests with
implicit surfaces [5]. This interaction between CPU and GPU algo-
rithms reinforces our belief that taking a closer look at displacement
map geometry will yield benefits.

To get better performance than simple ray-casting, some re-
searchers are currently looking at multi-scale models of surfaces in
which ray-casting is performed hierarchically at progressively finer
levels of detail [11] [15]. This approach, in which displacement
maps are applied recursively to larger scale displacement maps em-
phasizes the importance of displacement maps for modelling as a
generalized form of surface pasting [8].

Recent GPU algorithms, which are restricted in their manipula-
tion of geometry, have eclipsed earlier displacement mapping re-
search, which focussed on a better understanding of geometry as
a way of making more efficient displacement mapping algorithms.
The most geometry oriented of that earlier research was in terrain
mapping [7], which scanned the terrain along eye rays projected
onto a plane, a special case of the visibility curves we develop in
this paper. Their stepping algorithm is different from ours, moving
along the underlying plane, and not along the displacement map.
This choice gives them less flexibility in how to handle complex
silhouettes. In effect, an eye ray that does not intersect the under-
lying surface may well intersect the displacement map especially
close to the boundaries of the map, or when tall features are present
on the map and the scene is viewed from a low angle. By stepping
along the underlying surface, those details at the boundary edges
are missed and most surface stepping algorithms fill those pixels
with pseudo-data.

Thus, in terms of the current displacement mapping research the
work reported in this paper is a return to the past. However, we
regard that as a virtue, because it reexamines the geometric foun-
dation on which current algorithms are based, the best opportunity
for discovering a different style of algorithm.

3 GEOMETRY

This paper presents a new approach to the geometry of displace-
ment maps on planes and spheres. Those surfaces are simple, but
demonstrate fully how to take advantage of spatial coherence in the
height field. This geometry is exploited in the stepping algorithm
described in Section 4. Our algorithm steps along visibility curves
defined by the eye position and the underlying surface as a way of
dealing effectively with multiple solutions. This section describes
the geometric basis of the visibility curves, as illustrated in Fig-
ures 2 and 3.

3.1 Terminology

We use the following terminology in the description of the geome-
try of displacement map and our stepping algorithm. A height field
is a single-valued function h(s, t) that for any point (s, t) in its do-
main gives the height above that point. The height map is applied
to a finite region of the underlying surface, f , which may itself be
infinite. The underlying surface has at each point a normal vector,
n̂s(s, t), called the surface normal, which is determined by the ge-
ometry of the underlying surface. To apply the height field to the
underlying surface at (s, t), we displace from the underlying sur-
face, along the surface normal, by an amount equal to the height
field.

In world coordinates, the point (s, t) on the surface isO+f(s, t),
where O is the origin of world coordinates. The eye ray is O+αv̂,
where α ≥ 0 and the eye is placed, without loss of generality,
at the origin of world coordinates. When we say that the eye ray
intersects the height field at (s′, t′) we mean that the intersection
occurs at O + f(s′, t′) + h(s′, t′) n̂(s′, t′). It is important to note
that an eye ray intersecting the surface at (s, t) usually intersects
the height map at a different point (s′, t′), for which we must solve.
The generalized texture map defines at each point on the surface a
colour, C(s, t), a normal vector, n̂t(s, t), called the texture normal,
and the height, h(s, t).

The centers of projection, CoP are important points linking the
eye position to the underlying surface. They are points on the un-
derlying surface where the normal, n̂s(s, t), is parallel to their eye
ray. For the plane there is a single CoP which is the point on the
surface closest to the eye. For the sphere there are two, the closest
and the farthest points from the eye, of which one the nearest, is
non-occluded. Thus, CoPs defines the closest point on the under-
lying surface to the eye, and CoPv defines that point projected to
the view plane.



Figure 2: Geometry for a particular cross section of the height map on a plane and a sphere. The CoPs is the point on the underlying surface
closest to the eye. A line passing through that point is the intersection of a cross section plane including the eye, with the underlying surface.
Eye rays on this cross section plane intersect the height field in a sequential manner, from closest to the CoPs to away from it.

3.2 Problem Statement and Approach

Given an underlying surface of a plane or a sphere onto which a
height field is applied, and given an eye position and a view plane,
our goal is to solve the eye ray and height field intersection prob-
lem in one dimension. Our approach is to search along lines in the
view plane. For an arbitrary line in the view plane this requires a
two dimensional search, but in this section we show that there are
special lines in the view plane for which search is one dimensional.
We call these lines visibility lines in the view plane.

We must determine where each eye ray intersects the height field,
specifically the point on the underlying surface from which the in-
tersection is displaced. The two-dimensional mapping between a
point on the view plane and the corresponding point on the under-
lying surface, from the red points to the black ones in Figure 2,
is straightforward. However, the view plane point should have the
colour, and normal of the non-occluded intersection of the eye ray
with the height map, the solid blue points in Figure 2. Finding this
intersection is challenging. In effect, depending on the angle of the
eye ray and the geometry of the height field, multiple intersections
are possible, as shown in Figure 2, in which case we must find the
non-occluded solution.

The geometry of the eye ray, underlying surface and height map
has some hitherto unnoticed regularities that make finding the inter-
section easier. For underlying surfaces that are planes or spheres all
intersections of an eye ray with any height map, including all mul-
tiple intersections, lie on a plane, P , spanned by the eye ray and
the normal at the surface intersection, as shown in Figure 2. Fur-
ther, we now have a one dimensional slice of our height map: the
intersection of P with the underlying surface, S, gives a curve C,
and the height field of S over C lies in the plane P , as illustrated in
Figure 2. We can then group eye rays into ordered sets such that the
non-occluded intersection on any ray is the solution closest to the
solution of the previous eye ray in the set, finding solutions sequen-
tially, and using spatial coherence in the height field to find each
next solution easily.

Each set of rays intersects the underlying surface along a vis-
ibility curve. The visibility curves cover the surface and share a
common point, the CoPs, the point on the surface closest to the
eye. While eye rays must be processed in order along each curve,
the curves can be processed in any order.

Eye rays are processed sequentially along each curve. But which

direction guarantees finding the non-occluded intersection when
multiple intersections exist? For any eye ray the non-occluded in-
tersection is the one closest to the eye. The eye ray to the closest
point on the surface, CoPs, intersects the height field at a single
point when the CoPs is within the mapped region of the defined
underlying surface. Since all visibility curves share the CoPs we
can start the algorithm there for every curve. Indeed, by starting to
solve near the closest CoPs and stepping away from it along each
visibility curve, then the solution closest to the previous solution is
always the non-occluded one. Thus, a stepping algorithm that finds
the first solution correctly can return the closest non-occluded inter-
section along the curve for the remainder eye rays in the set. Then,
to complete the geometry we need to find the form of the visibility
curves for the underlying surface.

3.3 Visibility Curves for Planes and Spheres

The visibility curves for an underlying surface are determined by
the surface normals and the eye position. Figure 3 show the visibil-
ity curves for a plane and a sphere.

For planes, there is a single CoPs which is the point where the
eye ray is perpendicular to the plane. CoPv is the projection of
this point to the view plane. (The geometry is not well-defined in
a single negligible case, when the eye point lies on the underlying
plane.) Because all points on a plane have the same surface normal,
points that displace to the same eye ray lie on a straight line, and the
set of all visibility curves is a pencil of lines, centred on the CoPs.
This pencil maps to the view plane as a pencil of lines centred on the
CoPv . Thus, when the underlying surface is a plane, the visibility
curves have their simplest form, lines on the plane radiating from
the CoPs, which project to lines on the view plane radiating from
the CoPv . If the CoPs lies within the height map then the eye rays
are processed outward from the CoPs. If it does not then they are
processed from the eye ray closest to the CoPs, proceeding away
from the CoPs.

On a sphere the geometry is more complex, but similar. There
are two centers of projection, a minimum closest to the eye, the
north pole, and a maximum farthest from it, the south pole. (The
terms ‘north’ and ‘south’ have, of course, no significance with re-
spect to world coordinates. They merely provide a convenient way
of describing the curves. As we orient the ‘north’ of the sphere to
face the eye, only the northern hemisphere is visible, and not quite



Figure 3: The left diagram shows that the coherent visible curves for an underlying plane are a pencil of lines on both the surface and the view
plane, intersecting respectively at CoPs and CoPv . The right diagram shows that the coherent visible curves for an underlying sphere are the
set of great circles intersecting at the CoPs for the surface, which maps to a pencil of lines on the view plane meeting at the CoPv .

all of it because the distance to the eye is finite. The whole southern
hemisphere is back-facing.)

The visibility curves are great circles passing through north and
south poles: that is, lines of constant longitude. To see why, no-
tice that all normal vectors on a sphere point radially away from the
sphere centre. A great circle is the intersection of the sphere with a
plane passing through the centre of a sphere, the equator being an
example. Thus, the normal vectors on a great circle lie in a plane.
Furthermore, because the great circles pass through the north pole,
the minimum CoPs lies on each of these planes. For each eye ray
to the sphere, the set of possible intersections with the height field,
lies on the curve defined by the points whose surface normal, n̂s,
displaces to the ray. Thus, the set of points on the same visibil-
ity curve on the sphere are on a same plane that contain the sphere
center. Therefore, every eye ray is part of a cutting plane that inter-
sects the sphere on a great circle, on which lies the set of points that
displace to possible intersection solutions with the height map.

Because this set of eye rays lies in a plane, they intersect the
view plane on a line passing through the projection of the north
pole, CoPv . On the view plane they are a pencil of straight lines
centred on the CoPv , the pattern we found for the plane, though
originating in a different geometry.

The pattern of visibility curves on the view plane, a pencil of
lines centred on the CoPv , also occurs in multicamera views of a
scene, because the geometry is similar. It has been used for calculat-
ing occlusion [9] because it shares the ordering properties exploited
below.

4 THE STEPPING ALGORITHM

The geometry discussed above suggests a natural algorithm. An
eye ray terminating on a plane or a sphere defines a cutting plane,
which contains a visibility curve, all surface normals on the curve,
all eye rays that terminate on the curve, and all solutions where an
eye ray intersects a height field. Figure 1 shows a cross-section in
such a cutting plane.

The computation on each cutting plane is independent of the
computations on other planes. Therefore, we have reduced a 2D
computation on a surface to a collection of independent 1D compu-
tations, one for each visibility curve. In each 1D computation, the
solution for one eye ray depends on the solutions of previous eye
rays, which makes the computation less distributable than bump or
texture mapping, but which takes advantage of spatial coherence in
the height field.

A natural algorithm results from two observations. First, when a
solution is known, spatial coherence makes it easy to find the next

solution by stepping along the height field. And, second, when
an eye ray intersects the height field in several places, the non-
occluded solution is the first found. Thus, the natural algorithm
steps along the height field, finding the next solution reliably pro-
vided only that we start stepping at a good enough solution.

In this section, the underlying surface in the figures is a plane
because the diagrams are easier to understand. Equivalent figures
for a sphere use horizontal steps that follow the curvature of the
surface, with normals that are perpendicular to the tangent at the
surface point. Section 5 gives the mathematics for each surface in
detail. In addition, the eye point is always further from the sur-
face than the one drawn. Finally, the distance between successive
eye rays, ∆s, is exaggerated to show the details of stepping more
clearly. Spatial coherence is greater in practice, because the eye
rays are closer together compared to the surface detail.

4.1 Step

The algorithm steps along each visibility curve from one eye ray
to the next, following the height map. Eye ray positions are deter-
mined by sample points on the view plane, placed so that each pixel
gets about the same number of samples as any other. The details of
the sampling method are described in Section 5.3. Two consecutive
eye rays are separated on the underlying surface by a distance ∆s.
The heart of the algorithm is stepping along the height field so that,
given the solution for one eye ray, we find the solution for the next
one. A horizontal step, to intersect the eye ray, can be in either di-
rection: forwards (advance step) or backwards (reverse step) along
the visibility curve.

4.1.1 Advance Step

In Figure 4, the left diagram shows the stepping algorithm. The so-
lution a′ for the left eye ray, which intersects the underlying surface
at a, is known. The solution b′ for the next eye ray, which intersects
the underlying surface at b, is to be found. From the known solu-
tion a horizontal step to the next eye ray, ∆d1, is taken, followed
by a vertical step to the height field. Horizontal and vertical steps
alternate until we are ‘close enough’ to the solution. The solution
illustrated converges at b′ after three iterations. The algorithm’s
convergence condition is that the length of a horizontal step ∆dn

falls below a pre-determined threshold ǫ, which is a fraction of the
sampling distance ∆s. That is, the threshold is ǫ∆s.

4.1.2 Reverse Step

To find the next solution, horizontal steps are taken parallel to the
surface. It is possible to overstep, passing the solution. Then the



Figure 4: On the left typical iteration of advance steps. On the right,
intersections with the height map and the eye ray that occur for a
reverse step.

next step to the eye ray reverses direction as shown in the right
diagram of Figure 4. Continued stepping may circle the solution
and can even diverge. When a reverse step occurs the stepping al-
gorithm uses binary search to interpolate between the ends of the
reverse step until the interval containing the solution is smaller than
the threshold.

4.1.3 Remarks

The stepping algorithm has several possible pathologies. The most
common occurs when the height field is almost parallel to the eye
ray. Then the number of steps needed to traverse the narrow space
between them can increase without limit. This is a frequently-
observed property of algorithms that find their solutions by step-
ping, such as hill-climbing algorithms. The pathology is, however,
unimportant for displacement mapping, where there are several eye
rays per pixel. Every intermediate solution lies within the pixel and
it does not matter which one is obtained. Thus, a generous thresh-
old stops stepping after a small number of steps without making
the resulting image any less accurate. Most other pathologies are
unimportant for similar reasons.

The stepping algorithm is superficially similar to earlier
work [7], but there is an important difference. We step along the
height field using the eye rays to size the steps, while Lee et al.
step along the surface, using texel density to control the step size.
The difference is most significant when there are many texels per
eye ray, as occurs when the surface is distant or when the angle
between the eye rays and the surface is small. For distant surfaces
stepping along the height field has a big advantage; for low eye
ray angles, however, stepping along the height field can suffer from
over-stepping pathologies, which can leave holes in occluding sur-
faces. Such pathologies need to be remedied, usually by adjusting
the length scale of the height field.

4.2 First Solution

Finding the next solution given a previous one is not enough: a first
solution is needed. The general principle is that stepping moves
from steeper eye rays to less steep ones, the direction of which en-
sures that occluding solutions precede occluded ones. If the CoPs

lies within the mapped region, stepping starts at the CoPs and
moves away from it along the visibility curve. At the CoPs the
eye ray is perpendicular to the underlying surface, and the solution
occurs where the eye ray intersects the underlying surface, as shown
in Figure 5. Stepping moves along the visibility curve away from
the CoPs using the algorithm described above.

More often, however, the CoPs lies outside the mapped region
as on the left in Figure 2. Then there is a point where the visibility
curve enters the region, the leading edge, which is the point on the
visibility curve closest to the CoPs, such as (s1, t1) in the figure
and a point where it leaves the region, the trailing edge. (sn, tn)
in the figure is a point close to the trailing edge. At the leading
edge the rays point into the region from outside it, as shown in the
figure. In such cases we find the intersection of the edge of the

Figure 5: Eye rays near a CoPs inside the underlying surface. The
arrows pointing in opposite directions show the opposite directions
taken along the visibility curve for the starting step on either side of
the CoPs.

Figure 6: Boundary conditions of the algorithm for a CoP outside the
underlying surface. The proper silhouette is rendered by not render-
ing some starting rays that intersect the underlying surface, whereas
rendering some final ones that do not.

region that is closest to the CoPs. We then choose the intersection
of the visibility curve with the boundary of the region that is closest
to the CoPs as the starting point, as illustrated in Figure 6. Thus,
the eye rays are guaranteed to be directed into the mapped region,
as shown.

The leftmost eye ray intersects the underlying surface at a in
Figure 6. Because there is no previous solution, the starting point is
the intersection of the ray with the underlying surface, from which
a vertical step is taken to the height field. The following horizontal
step, a reverse, goes outside the mapped region. The height field is
undefined and the ray is not rendered. The next eye ray, intersecting
the surface at b, uses the height at a as the previous solution. In the
figure, the second ray converges quickly to the correct solution, but
if, like the first ray, it has no solution, the last of its height field
intersections is taken as the starting point for the next ray. This
process is essential for getting the leading edge silhouette correct.

4.3 Last Solution

To complete the stepping algorithm a stopping criterion is needed.
A possible criterion might stop at the last eye ray intersecting the
mapped region, but this criterion does not calculate silhouettes cor-
rectly, as shown in Figure 6. Eye ray o is the last to intersect the
underlying surface. From its solution the stepping algorithm easily
finds the solution for eye ray p, even though this eye ray does not
intersect the inside of the underlying surface. Rendering this so-
lution is essential for the correct silhouette, so it is unacceptable to
stop when eye rays no longer intersect the surface. Notice, however,
processing the next ray q steps outside the region where the height



field is undefined. This is the termination condition: stepping stops
when a horizontal step goes outside the mapped region.

To consider all the cases, negative height field, i.e., under the
underlying plane, or eye point below the horizon line, a bounding
box may be useful to get the correct silhouette at the leading and
trailing edges. For the sphere, a larger sphere, enclosing the entire
height map, is used to get the silhouette at the trailing edge. In ef-
fect, eye rays are generated to include the maximum height value on
the sphere profile. Also the equivalent of horizontal stepping on the
sphere reaches outside where the step ends on southern hemisphere.

5 IMPLEMENTATION

Implementing the stepping algorithm requires computation of the
visibility curves, cutting planes, on the underlying surface and on
the view plane. Thus, we need easy to compute invertible map-
pings between sample points on the view plane their images on the
underlying surface. Having restricted ourselves to simple under-
lying surfaces, it is possible to derive two dimensional mappings
between the view plane and the plane or the sphere. The following
two sub-sections give 3×3 matrices for the mapping for planes and
non-linear equations for spheres.

Using the mappings between view plane and underlying surfaces
we create an algorithm for uniform sampling along visibility lines
on the view plane. Finally, a summary of our algorithm in the form
of a pseudo-code completes this section.

For both the plane and the sphere we use a right-handed world

coordinates, (̂ı, ̂, k̂, O) with both view plane and model down the
negative z-axis and the eye placed, without loss of generality, at the
origin. The view plane and underlying surfaces have internal coor-
dinate frames defined in terms of the world coordinate frame. The
view plane sphere transformations are done in more detail because
spherical coordinates are less familiar than rectangular ones.

5.1 Plane

The view plane and the underlying surface are both planes, with
respective coordinate frames, (̂ıv, ̂v, Ov) and (̂ıs, ̂s, Os). On each
plane, a point, Pv or Ps, is locally defined as a coordinate pair,
(u, v) for the view plane and (s, t) for the underlying plane surface
of the displacement map, using the following matrix notation.

Pv = uı̂v + v̂v +Ov =
ˆ

ı̂v ̂v Ov

˜

2

4

u
v
1

3

5

and Ps = sı̂s + t̂s +Os =
ˆ

ı̂s ̂s Os

˜

2

4

s
t
1

3

5 .

Using projective geometry we can map from local coordinates of
one plane to another using an invertible 3 × 3 matrix. (The matrix
is singular only in the uninteresting case where one plane maps to
a point or line in the other plane.) The exact form of the matrix fol-
lows immediately from expressing the points in world coordinates.
For the underlying plane, define S by

[̂ıs ̂s Os −O] =
h

ı̂ ̂ k̂
i

2

4

ı̂s · ı̂ ̂s · ı̂ (O −Os) · ı̂
ı̂s · ̂ ̂s · ̂ (O −Os) · ̂
ı̂s · k̂ ̂s · k̂ (O −Os) · k̂

3

5

=
h

ı̂ ı̂ k̂
i

S,

with an equivalent definition for the view plane, V .
Because S and V are invertible, the mappings, (u, v) → (s, t)

and (s, t) → (u, v) are well-defined.
2

4

u
v
1

3

5 = αV −1S

2

4

s
t
1

3

5 and

2

4

s
t
1

3

5 = α′S−1V

2

4

u
v
1

3

5

Figure 7: Geometry configuration used in the mathematics of the
mapping between the visibility curves of the sphere and the lines on
the view plane.

where the factors α and α′ account for the normalizing division
that occurs in projective transformations. Q = V −1S, with α =
1/(q20s+ q21t+ q22) is then the matrix representing the projective
transformation that maps from the surface to the view plane, and its
inverse is Q−1 = Q′ = S−1V , with α′ = 1/(q′20u+ q′21v+ q′22).

5.2 Sphere

For the case of the sphere, we derive the relation between a point
(u, v) on the view plane and a point on the sphere defined in polar
coordinates as (θ, φ). We consider a sphere of radiusRwith its cen-
ter on the xz-plane. Its centre lies at a distance ρ from the eye, and
at an angle ψ from the negative z-axis, as shown in Figure 7. Thus,
the sphere center is at (xC , yC , zC) = (ρ sinψ, 0,−ρ cosψ).

A point on the sphere is labelled by coordinates (θ, φ),
indicating its latitude (θ) and longitude (φ). A general
point on the underlying surface is given by f(θ, φ) =
(R sin θ cosφ,R sin θ sinφ,R cos θ). As spherical coordinates
must be oriented, we select the most convenient orientation: the
z-axis of the sphere (θ = 0) pointing toward the eye, that is, to-
ward the origin of world coordinates, and the zero of longitude
(φ = 0) lying in the xz-plane. The resulting orientation as de-
fined is shown in Figure 7. Thus great circles of constant longitude,
φ = constant, map to straight lines in the view plane, as described
in Section 3 and illustrated on the right diagram of Figure 3).

Lines of constant latitude, θ = constant, are circles centred
on and perpendicular to the line from the eye to the sphere cen-
tre. They have radius R sin θ. Any point on a circle is deter-
mined by its longitude φ. Thus, in world coordinates a point on
the sphere is displaced from the sphere centre by (xp, yp, zp) =
(R sin θ cosφ cosψ,R sin θ sinφ,R sin θ cosφ sinψ).

Therefore, in the world frame, an arbitrary point on the sphere,
(θ, φ), has coordinates

(xP = ρ sinψ −R cos θ sinψ +R sin θ cosφ cosψ,

yP = R sin θ sinφ,

zP = −ρ cosψ +R cos θ cosψ +R sin θ cosφ sinψ).

It projects onto the view plane, which is at z = −zv and perpen-



dicular to the z-axis, at (u, v). The mapping, (θ, φ) → (u, v) is

u = zv
sinψ(1 − β cos θ) + β sin θ cosφ cosψ

− cosψ(1 − β cos θ) + β sin θ cosφ sinψ

v = zv
β sin θ sinφ

− cosψ(1 − β cos θ) + β sin θ cosφ sinψ
,

where β = R
ρ

. Conversely, the inverse mapping (u, v) → (θ, φ) is

φ = tan−1

“ v

zv sinψ + u cosψ

”

θ = cos−1

„

B(u, v) ±
p

α2(B(u, v) + 1) −B(u, v)

α(B(u, v) + 1)

«

where B(u, v) =
v2 + (zv sinψ + u cosψ)2

(u sinψ − zv cosψ)2
.

The plus sign in the equation for θ gives the front facing intersec-
tion; the negative sign gives the back facing one.

These two (nonlinear) mappings transform points from the sur-
face of the sphere to the view plane and vice versa. They are eval-
uated frequently during stepping. (Values outside the range of the
trigonometric functions indicate view plane coordinates that do not
intersect the sphere.)

5.3 Sampling

For planes and spheres the visibility curves map to lines on the view
plane. We could follow those lines away from the CoPv calculat-
ing once per pixel traversed, but it is more attractive to combine
antialiasing using supersampling with the rendering code. Then we
wish to sample along visibility curves so that approximately the
same number of samples fall in each pixel.

The following algorithm gives a reasonable uniform density of
samples, across the view plane.

1. Choose the number of samples per pixel, n.

2. Set the density of the visibility lines so that they are spaced
1/

√
n pixels apart at the point in the mapped region farthest

from the CoP .

3. For each visibility line,

(a) Place the first sample at the trailing edge of the mapped re-
gion. Its distance from CoPv is r0.

(b) Place sample j at rj from CoPv where
rj = rj−1 − r0/rj−1

√
n.

(c) Stop placing samples when a sample is past the leading edge
or negative.

(d) Jitter all the samples along the visibility line, not off it.

For each visibility line the stepping algorithm is then used to find
the intersection between the height field and an eye ray constructed
through each sample in turn, starting with the sample closest to
the CoPv . Occasionally, stepping is not terminated when the last
sample is reached, which occurs at the trailing edge. Then extra
samples are generated by inverting the sample generation process
and continuing outside the mapped region.

For each pixel the samples that fall within it are averaged. The
algorithm described does not result in uniform sampling, since sam-
ples have to remain along visibility lines of the view plane to pro-
vide the fundamental coherence in our height and ray intersection
algorithm.

5.4 Pseudo-code

The stepping algorithm (Section 4), the transformations between
the view plane and the underlying surface and the geometry of vis-
ibility curves (Section 5.1 and 5.2) contribute to the following im-
plementation.

First, the CoPv is located from the geometry of the underlying
surface and the view position. Then, using the algorithm described
in Section 5.3, the samples on the view plane are pre-computed.
Finally the stepping algorithm for each visibility line is executed.
Rough pseudo-code for an implementation of the stepping algo-
rithm follows.

For each visibility line,

1. Calculate the first solution at the leading edge.

2. While the visibility line is not fully processed:

(a) Get next inside sample point or create extra sample if beyond
trailing edge.

(b) Make the eye ray for the sample.

(c) While a close enough solution is not found for the sample:

i. Step horizontally from previous solution to the eye ray.

ii. If no height field, visibility curve ends. Process trailing
edge solution and reiterate pseudo-code for next line.

Else step vertically to height field. This is now the solution.

iii. If horizontal step was smaller than threshold, output
solution and goto 2(a).

Else if horizontal step was a reverse, find reverse solution,
output solution and goto 2(a).

Else goto 2(c).

6 RESULTS

In this section, we present our results and describe how the conver-
gence threshold affects the quality of the renderings and efficiency
of the algorithm.

The input height fields used are a scanned height field with ac-
companying fields of colour and texture normals, as in Figure 8(e),
or are generated from one, Figure 8(a, c, d, f), or multiple, Fig-
ure 8(b), sinusoidal functions. When using sinusoidal functions
with the height encoded as a colour ramp (highest to lowest: red,
yellow, green, cyan, blue and then purple), artifacts are quickly no-
ticed, easily diagnosed, and are guaranteed not to be the result of
sampling noise. The image with six peaks on a plane, Figure 8(b), is
made from adding six Laplacian functions, each having a different
amplitude, width and location. This test image demonstrates com-
plex occlusion and a correct silhouette at both leading and trailing
edges. The simple sinusoidal image, Figure 8(d), is a good test case
for understanding the algorithm and identifying pathologies.

The images in Figures 8 show the capabilities of the stepping
algorithm on both underlying surfaces. It handles occlusion, find-
ing the closest intersection when there are multiple intersections,
without having to perform 3D computation. Correct trailing edge
silhouettes of the displacement map are produced by continuing to
find intersections for eye rays that intersect the underlying surface
outside the displacement map. The results also demonstrate the re-
sampling and antialiasing described in Section 5.3.

For the plane surface, the images in Figures 8(b, c, d) show low
angle eye rays that are challenging to get right, but perceptually im-
portant because the silhouette shows prominently the 3D shape of
the displacement. When the eye ray intersects the underlying sur-
face at a grazing angle, the algorithm automatically performs the
careful silhouette calculation at grazing view angles, especially at
the trailing edges of the underlying surface. In addition, at grazing
angles there is higher risk of steps passes through narrow features.



Unslanted Slanted
ǫ = 0.25 ǫ = 0.001 ǫ = 0.25 ǫ = 0.001

Visibility curves 1 079 1 079 1 117 1 117

Inside samples 374 996 374 996 238 706 238 706

Extra samples 37 728 36 087 69 775 66 330

Total samples 412 724 411 083 308 481 305 036

Advance steps 472 559 1 180 941 420 785 602 868

Reverse steps 15 265 689 60 340 231 364

Binary cuts 101 1 219 162 98 944 1 082 847

Table 1: Comparison of the number of operations required for the
sine wave displacement map (Figures 8(d), 9–11). These values are
computed for 2 samples per pixel, and scale linearly with the number
of samples, except for the number of rays which scales as the square
root of the number of samples.

To render correctly at these view angles, the convergence thresh-
old, ǫ, which is a fraction of the inter-sample distance, needs to be
smaller than when the displacement map is seen at a steep angle.

Figure 9 shows the variations in image quality for different con-
vergence thresholds for the sinusoidal displacement map seen at a
grazing angle. The rendering has fewer artifacts when ǫ is smaller.
The image on the left of Figure 9 shows artifacts on the leading and
trailing edges of the frontal plane, and at the occluding edges, which
are especially visible against the black background. In the image on
the right, these artifacts are reduced, but a seam of non-red samples
is still noticeable along the occlusion line. For Figure 8(d), where
ǫ = 0.001 the rendering is clean, the occluding edges are every-
where red. Figure 11 shows close up views of the three images
at the trailing edge of the far right corner. Also displayed is the
number of steps required for each pixel. The extra iterations when
the convergence threshold is decreased are responsible for the im-
proved result.

In contrast with the grazing angle of view, Figure 10 shows that
for steep view angles a much larger ǫ provides quick computation of
artifact-free images. Ultimately, controlling the step size automati-
cally, depending on height field curvature and the distance between
eye rays, will offer the best solution.

Also, the image quality provided by a given convergence thresh-
old, ǫ, depends on the features present in the height map. The left
image of Figure 12 shows that for a low view angle a relatively
small threshold, ǫ = 0.01, leaves small artifacts on the thinner and
higher peaks. The right top picture shows the number of iterations
in the middle peak, to contrast with the image in Figure 8(b), where
ǫ = 0.0001 and there are no artifacts.

We evaluate the efficiency of the stepping algorithm in terms
of the number of basic operations required per sample. For each
sample on a visibility curve, two operations, eye ray intersection
and height field evaluation, are iterated to find the intersection with
the height map. The efficiency of the algorithm depends on the
number of evaluations required of these basic operations. Table 1
shows measured values for the sine wave displacement map. The
two columns labelled ‘Unslanted’ gives values when the surface is
viewed from a high angle. The extra samples, which are added
outside the mapped region to get the silhouette correct, are about
10% of the samples inside the region, which we expect because the
silhouette lies close to the edge of the rectangular region. When
the threshold is generous, one quarter of the pixel size, only a little
more than one advance step is needed per sample; there are almost
no reverses and binary search is rare. However, when the threshold
is set much smaller, the number of advance steps per sample in-
creases to about three. Equally serious, more than half the samples
produce a reverse because advance steps beyond the intersection
are much more likely, and four to five binary interpolations are re-

quired before the threshold is reached. In total about six evaluations
are needed per sample.

When the same surface is viewed from a low angle, (the two
columns labelled ‘Slanted’), the number of inside samples is
smaller because the mapped region covers less of the display, but
the number of extra samples is much greater because the silhouette
goes farther from the underlying surface. Well over a quarter of the
samples are extra. When the threshold is generous, the number of
advance steps is scarcely increased compared to the unslanted view,
but the number of reverses increases greatly. Reverses occur on a
fifth of the samples, but the number of binary interpolations per re-
verse is small, less than two. This more challenging view less than
doubles the number of evaluations required. When the threshold is
very small the slanted view performs little worse than the unslanted
one, about six to seven evaluations per sample.

The important difference between the slanted and unslanted
views is that the generous threshold produces a good rendering for
the unslanted view, while the strict threshold is required to get a
good rendering for the unslanted one. Thus, relaxing the threshold
without loss of quality for low angle views is the most promising
avenue for increasing the efficiency of the algorithm. As for com-
paring this algorithm with others in terms of efficiency, the result
is highly dependent on architecture. The basic evaluations required
for stepping, in terms of which we measure efficiency require only
a few arithmetic operations on the CPU. Whether or not they can be
equally simply implemented on a modern GPU remains for future
research.

7 CONCLUSIONS

The stepping algorithm for displacement mapping on planes and
spheres, which we described in this paper, correctly evaluates self-
occlusion and silhouettes, avoids three-dimensional computation,
takes advantage of spatial coherence in the height field, minimizes
inter-pixel interactions caused by multiple solutions, includes re-
sampling and antialiasing of colours and texture normals in the
algorithm, and supports self-shadowing using shadow maps. We
measured the efficiency of the algorithm in terms of a basic com-
putational unit, which calculates the position of the eye ray (in one
dimension) at a given height above the surface and evaluates the
height field at that point. On average, much less than ten such evalu-
ations per sample are required for the more challenging cases. This
efficiency is achieved by taking advantage of spatial coherence.

This paper makes three contributions to the geometry of dis-
placement map. The first is the importance of the visibility curves,
the underlying surface and the CoP s, especially in the presence of
multiple solutions. These concepts provide a good foundation for
formalizing the geometry of displacement mapping. The second
is the demonstration that for simple underlying surfaces, displace-
ment mapping can be implemented in one dimension. The third
contribution, a minor one, is the systematic method of sampling
in the presence of visibility curves. The implementation provides
these desirable features, while simultaneously resampling the tex-
ture map and doing antialiasing.

By keeping the geometry simple and considering only two sim-
ple underlying surfaces, we were able to lower the dimension of
displacement mapping. In the future we plan to extend the work
presented in this paper to calculate the visibility curves on arbitrary
manifolds using differential geometry, and thus gain the advantages
of our algorithm in generalized displacement mapping. The geom-
etry of general surfaces is more challenging, but the singularities
that exist have been well studied [1]. The visibility curves are not,
in general, straight lines on the view plane, but the generalization is
likely to be important because it enables possible recursive texture
mapping as a way of handling multiple levels of detail.



(a) (b) (c)

(d) (e) (f)

Figure 8: Images showing the capabilities of the stepping algorithm on both underlying surfaces.

Figure 9: Effect on rendering quality given by the convergence
threshold value, ǫ. On the left, ǫ = 0.25 whereas on the right ǫ = 0.1.

Figure 10: At a steep viewing angle, image produced with ǫ = 0.25
presents no artifacts (left) and used a small number of iterations (on
the right, white means 1 iteration and green means [2, 3]).

Figure 11: Close up comparison of rendering quality with the num-
ber of iterations taken. First row, on the left ǫ = 0.25, on the middle
ǫ = 0.1, respective close up of images in Figure 9, and on the right
ǫ = 0.001, close up of Figure 8. Second row, iteration numbers are
coded by colour. Dark red means more than 8, red ]5, 8], blue ]3, 5],
green [2, 3] iterations, and white means 1 iteration.

Figure 12: With ǫ = 0.01 on a grazing angle the peaks show artifacts
whereas in Figure 8(b) where ǫ = 0.0001 there are no artifacts. The
top right picture shows number of iterations for the left image, on the
bottom it is the equivalent for Figure 8(b).



ACKNOWLEDGEMENTS

The authors would like to thank the reviewers for their comments.
All the authors were supported by NSERC grants during the time
of this research.

REFERENCES

[1] V. I. Arnold, V. S. Afrajmovich, Y. S. Il’yashenko, and L. P. Shil’nikov.

Bifurcation Theory and Catastrophe Theory. Springer-Verlag, Berlin,

1999.

[2] J. F. Blinn. Simulation of wrinkled surfaces. In Computer Graphics

(Proceedings of SIGGRAPH ’78), volume 12, pages 286–292, Aug.

1978.

[3] R. L. Cook. Shade trees. In Computer Graphics (Proceedings of

SIGGRAPH ’84), volume 18, pages 223–231, July 1984.

[4] W. Donnelly. Per-pixel displacement mapping with distance functions.

In GPU Gems 2, chapter 8, pages 123–136. Addison Wesley, Mar.

2005.

[5] J. C. Hart. Sphere tracing: a geometric method for the antialiased ray

tracing of implicit surfaces. The Visual Computer, 12(10):527–545,

Dec. 1996.

[6] J. Kautz and H.-P. Seidel. Hardware accelerated displacement map-

ping for image based rendering. In Graphics Interface ’01, pages

61–70, 2001.

[7] C.-H. Lee and Y. Shin. A terrain rendering method using vertical ray

coherence. Journal of Visualization & Computer Animation, 8(2):97–

114, Apr. 1997.

[8] R. Leung and S. Mann. Distortion minimization and continuity preser-

vation in surface pasting. In Graphics Interface ’03, pages 193–200,

2003.

[9] W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and L. McMillan.

Image-based visual hulls. In Computer Graphics (Proceedings of SIG-

GRAPH ’00, pages 369–374, 2000.

[10] N. L. Max. Vectorized procedural models for natural terrain: Waves

and islands in the sunset. In Computer Graphics (Proceedings of SIG-

GRAPH ’81), volume 15, pages 317–324, Aug. 1981.

[11] K. Oh, H. Ki, and C.-H. Lee. Pyramidal displacement mapping: a

GPU based artifacts-free ray tracing through an image pyramid. In

Symposium on Virtual Reality Software and Technology ’06, pages 75–

82, 2006.

[12] M. Pharr and P. Hanrahan. Geometry caching for ray-tracing displace-

ment maps. In Eurographics workshop on Rendering techniques ’96,

pages 31–40, 1996.

[13] H. Qu, F. Qiu, N. Zhang, A. Kaufman, and M. Wan. Ray tracing height

fields. In Computer Graphics International, pages 202–209, 2003.

[14] N. Tatarchuk. Dynamic parallax occlusion mapping with approximate

soft shadows. In Symposium on Interactive 3D graphics and games,

pages 63–69, Mar. 2006.

[15] R. D. Toledo, B. Wang, and B. Levy. Geometry textures. In Brazilian

Symposium on Computer Graphics and Image Processing, pages 79–

86, Oct. 2007.


