
(Coding) Collage Abstracted from Observed Art
Nianyi Wang ’18 F Jingxian Wu ’18 F Samantha Braver ’18 F Lillian Pentecost ’16

Faculty Mentor: Elodie Fourquet

Few students are responding to artworks owned by Colgate
University writing computer graphics code. The resulting
images will be showcased in an art exhibit demonstrating
how the Picker Gallery collection is used in the curricula.

Each art work transforming process commonly starts with
only colored paper and scissors used to compose an abstract
image with simple shapes and a limited color palette. The
physical collage serves as a template for the graphics code.
This poster presents the concept: background, inspiration,
process and its limit.

BACKGROUND

Algorithmic Thinking : Programs that Solve Well-defined Visual Problem
Elodie Fourquet

Colgate University

In early 2014 I created and taught a CS0 course for women students at Mount Holyoke
College. I chose to emphasize algorithmic thinking as a way of solving problems on
and off the computer, so I needed concrete and appealing problems for the students to
solve. Having the students create their own problems was my way of doing so.

Based on a one week introduction to visual design, each student designed the image
or animation that they would later program. As they did so outside class, the students
and I collaborated in class solving the problems of implementing a design I had chosen:
solving design problems of their own overlapped with algorithmic solution of imple-
mentation problems in class. Subsequently, they applied the classroom lessons to their
own designs. The result was a collection of programmed images and animations the
students were eager to show.

The dual nature of their practice appealed to the students: they became highly moti-
vated; they took ownership of their work and of the skills they acquired; they formed
a cohesive community working together in the lab. Modelling on the classroom work
in which they participated was effective in building programming skills.

IN CLASS

Processing—A language designed by artists for artists. Students aspire to artistic goals
and endeavours and therefore are engaged and keen to practice problem solving in a
visual art framework. However, students are not artists, not yet, they need training,
models and structure.

Design Principles—I presented the design
process described in Picture This: How
Pictures Work by Molly Bang. As shown on
the left a sequence of pictures creates a rep-
resentation of the Little Red Ridding Hood:
contrasting alternatives, working incre-
mentally. I believe this book is key to the
students achievement in creating simple
and effective pictures that tell stories.

In class version of each assignment. For the two left most column, the first row
presents the designs (aka blueprints) that guided the programs we wrote in class while
the second row contains the output of these programs. The right most column shows
two frames of the simple animation created in class.

ASSIGNMENT 1: COMPOSITION

For Assignment 1 students first design their image composition using paper cuts and/or sketches. Abstrac-
tion, simple shapes and few colors are used to tell a story.

Students then translate their physical plans to a Processing program composed of a sequence of calls to
graphics functions. A coordinate system and a grid is required to map the picture design to the function
call statements with appropriate parameters. In addition mastery of the color model, order of instructions
and the painter’s algorithm is required.

Match their output to the paper plans above!

EXAMPLE CODE
/*Assignment 1 02/07/14
Based on Edward Hopper's Nighthawks (1942)*/

size(1000,800);
background(255);

smooth();
noStroke();

//the lowest part of the bar
fill(11,54,36);
quad(400,520,1000,650,1000,880,400,680);

//upper orange part of the background store
fill(139,52,17);
rect(0,0,700,200);

//black top right corner
fill(0);
rect(700,0,200,200);

//5th small window
stroke(15,95,43);
strokeWeight(70);
strokeCap(SQUARE);
line(530,50,530,180);

noStroke();
//the bar sign
fill(75,23,4);
quad(455,80,1000,-20,1000,50,455,150);

//triangle part where the people sit
fill(250,243,103);
triangle(400,520,1000,400,1000,650);

//the big wall window
fill(51,82,81);
quad(400,200,900,230,900,420,400,520);

//little quad on the right
fill(247,168,47);
quad(900,230,1000,150,1000,440,900,420);

//the ceiling
fill(250,247,192);
triangle(400,200,1000,150,900,230);

//the 4th small window
stroke(15,95,43);
strokeWeight(70);
strokeCap(SQUARE);
line(410,50,410,180);

noStroke();

// the quad right below the bar sign
fill(7,36,24);
quad(400,150,400,200,1000,150,1000,50);

//the woman in red
fill(255,0,38);

quad(800,400,830,435,800,500,780,444);

//the man in black
fill(0);
quad(650,500,680,490,700,560,630,560);

//the man's hat
fill(0);
ellipse(680,490,40,25);

stroke(15,95,43);
strokeWeight(70);
strokeCap(SQUARE);

//the other small windows
line(50,50,50,180);
line(170,50,170,180);
line(290,50,290,180);

stroke(0);
line(50,140,50,180);
line(170,90,170,180);
line(290,120,290,180);

noStroke();

//the front of the background store
fill(11,54,36);
rect(0,200,400,320);

//the two black thin pillars on the front of the store

stroke(0);
strokeWeight(10);
line(170,200,170,520);
line(230,200,230,520);

//the two black windows on the front of the store
strokeWeight(100);
line(80,230,80,480);
line(320,230,320,480);

noStroke();

//ground 1
fill(130,137,134);
rect(0,520,400,160);

//ground 2
fill(53,96,106);
quad(0,680,400,680,800,800,0,800);

//the waiter in white
fill(255);
beginShape();
curveVertex(880,500);
curveVertex(880,500);
curveVertex(940,510);
curveVertex(965,540);
curveVertex(970,580);
curveVertex(970,580);
endShape();

ASSIGNMENT 2: PATTERNS

Assignment 2 follows the same process but the design can be abstract and needs to
contain patterns. The implementation therefore requires loops.

/*
Thu Truong Assignment 2
Composition inspired by the shapes, colors, and
their meanings drawn by Alexander Calder
I named it "Intrusion."
Date: March 24, 2014
*/

size(800, 500);
background(255);

color red = color (227, 32, 32);
color yellow = color (249, 252, 54);
color blue = color (60, 107, 213);

smooth();
float lineThickness = 15;

// tiny points, nested loop
for (int y = 0; y <= 300; y = y + 3)
 for (int x = 300; x <= width; x = x + 3)
 point(x, y);

//blue rectangle
fill(blue);
rect(300, 300, 500, 200);

//3 small red ellipses
strokeWeight(lineThickness/3);
fill(red);
ellipse(575, 130, 140, 140);
ellipse(655, 400, 80, 80);
ellipse(760, 200, 50, 50);

//yellow ellipse
fill(yellow);
ellipse(350, 300, 300, 300);

//white ellipse on top of the yellow ellipse
//together they create a crescent shape

fill(255);
ellipse(250, 300, 300, 300);

//white rectangle on the left, below the bars
noStroke();
rect(0, 0, 300, height);

//bars, 2nd loop
stroke(0);
for (int lineX = 0; lineX < 280; lineX +=33){
 strokeWeight(lineThickness);
 line (lineX, 0, lineX, height);
}

strokeWeight(lineThickness/3);
line(300, 0, 300, 500);

//horizontal line
strokeWeight(lineThickness/2);
line(250, 300, width, 300);

//random small blue circles
//3rd loop, random function
strokeWeight(lineThickness/3);
fill(blue);
float circleX = 0;
float circleY = 0;
int circleSize = 40;

for (int i = 0; i < 8; i++) {
 circleX = random (270);
 circleY = random (height);
 ellipse(circleX, circleY, circleSize, circleSize);
}

//multiple concentric ellipses with a red one in middle
//4th loop, if conditional
int ellipseX = 250;
int ellipseY = 300;
int ellipseSize = 300;

int ellipseGap = 40;

for (int i = 0; i <= 3; i++){
 if (i != 3) fill(255);
 else fill(red);

 strokeWeight(lineThickness);
 ellipseSize = ellipseSize - ellipseGap;
 ellipse(ellipseX, ellipseY, ellipseSize, ellipseSize);
 lineThickness = lineThickness / 1.4;
}

lineThickness = 15;

// yellow triangles along vertical line
fill(yellow);
strokeWeight(lineThickness/3);
triangle(250, 0, 300, 0, 300, 50);
triangle(300, 50, 350, 100, 300, 150);
triangle(250, 500, 300, 500, 300, 445);

// horizontal yellow triangles
//5th loop, if conditional
int upperX1 = 500;
int upperX2 = 525;
int upperX3 = 550;
int lowerX1 = 550;
int lowerX2 = 575;
int lowerX3 = 600;

int upperY = 270;
int baseY = 300;
int lowerY = 330;

int triangleBase = 50;

for(int i = 0; i <= 5; i++) {
 if (i % 2 != 0) {
 triangle(upperX1, baseY, upperX2,
 upperY, upperX3, baseY);

 upperX1 = upperX1 + triangleBase*2;
 upperX2 = upperX2 + triangleBase*2;
 upperX3 = upperX3 + triangleBase*2;
 } else {
 triangle(lowerX1, baseY,
 lowerX2, lowerY, lowerX3, baseY);
 lowerX1 = lowerX1 + triangleBase*2;
 lowerX2 = lowerX2 + triangleBase*2;
 lowerX3 = lowerX3 + triangleBase*2;
 }
}

//PHEW!!
save("truon22a_a2.png");

ASSIGNMENT 3: ANIMATIONS

Assignment 3 includes function definitions to draw similar objects (varying their size
and/or color), animation and mouse/keyboard interactions.

DISCUSSION

During the term student’s enthusiasm guided the course development: they were keen
to learn new concepts to make complex designs; they frequently asked about graphics
research. They requested to learn about gradient for Assignment 1! They enjoyed
discussing the contrast between their work and the 3D equivalent.

Students were surprised by the approach and methodology of the course. They didn’t
expected programming to be so fun and computer science to involve creativity. They
wholeheartedly embraced the course, which changed their view of computer science.

Most important several students expressed unprompted interest in taking a follow-on
course. Two students were part of a team of five who went to the 36 hours hacking at
Yale University the following November.

• What is their view of computer science one year later?
• Was the women classroom a contributor to this special experience?
• How does this curriculum compare to other CS0 which use a visual approach?

Algorithmic Thinking : Programs that Solve Well-defined Visual Problem
Elodie Fourquet

Colgate University

In early 2014 I created and taught a CS0 course for women students at Mount Holyoke
College. I chose to emphasize algorithmic thinking as a way of solving problems on
and off the computer, so I needed concrete and appealing problems for the students to
solve. Having the students create their own problems was my way of doing so.

Based on a one week introduction to visual design, each student designed the image
or animation that they would later program. As they did so outside class, the students
and I collaborated in class solving the problems of implementing a design I had chosen:
solving design problems of their own overlapped with algorithmic solution of imple-
mentation problems in class. Subsequently, they applied the classroom lessons to their
own designs. The result was a collection of programmed images and animations the
students were eager to show.

The dual nature of their practice appealed to the students: they became highly moti-
vated; they took ownership of their work and of the skills they acquired; they formed
a cohesive community working together in the lab. Modelling on the classroom work
in which they participated was effective in building programming skills.

IN CLASS

Processing—A language designed by artists for artists. Students aspire to artistic goals
and endeavours and therefore are engaged and keen to practice problem solving in a
visual art framework. However, students are not artists, not yet, they need training,
models and structure.

Design Principles—I presented the design
process described in Picture This: How
Pictures Work by Molly Bang. As shown on
the left a sequence of pictures creates a rep-
resentation of the Little Red Ridding Hood:
contrasting alternatives, working incre-
mentally. I believe this book is key to the
students achievement in creating simple
and effective pictures that tell stories.

In class version of each assignment. For the two left most column, the first row
presents the designs (aka blueprints) that guided the programs we wrote in class while
the second row contains the output of these programs. The right most column shows
two frames of the simple animation created in class.

ASSIGNMENT 1: COMPOSITION

For Assignment 1 students first design their image composition using paper cuts and/or sketches. Abstrac-
tion, simple shapes and few colors are used to tell a story.

Students then translate their physical plans to a Processing program composed of a sequence of calls to
graphics functions. A coordinate system and a grid is required to map the picture design to the function
call statements with appropriate parameters. In addition mastery of the color model, order of instructions
and the painter’s algorithm is required.

Match their output to the paper plans above!

EXAMPLE CODE
/*Assignment 1 02/07/14
Based on Edward Hopper's Nighthawks (1942)*/

size(1000,800);
background(255);

smooth();
noStroke();

//the lowest part of the bar
fill(11,54,36);
quad(400,520,1000,650,1000,880,400,680);

//upper orange part of the background store
fill(139,52,17);
rect(0,0,700,200);

//black top right corner
fill(0);
rect(700,0,200,200);

//5th small window
stroke(15,95,43);
strokeWeight(70);
strokeCap(SQUARE);
line(530,50,530,180);

noStroke();
//the bar sign
fill(75,23,4);
quad(455,80,1000,-20,1000,50,455,150);

//triangle part where the people sit
fill(250,243,103);
triangle(400,520,1000,400,1000,650);

//the big wall window
fill(51,82,81);
quad(400,200,900,230,900,420,400,520);

//little quad on the right
fill(247,168,47);
quad(900,230,1000,150,1000,440,900,420);

//the ceiling
fill(250,247,192);
triangle(400,200,1000,150,900,230);

//the 4th small window
stroke(15,95,43);
strokeWeight(70);
strokeCap(SQUARE);
line(410,50,410,180);

noStroke();

// the quad right below the bar sign
fill(7,36,24);
quad(400,150,400,200,1000,150,1000,50);

//the woman in red
fill(255,0,38);

quad(800,400,830,435,800,500,780,444);

//the man in black
fill(0);
quad(650,500,680,490,700,560,630,560);

//the man's hat
fill(0);
ellipse(680,490,40,25);

stroke(15,95,43);
strokeWeight(70);
strokeCap(SQUARE);

//the other small windows
line(50,50,50,180);
line(170,50,170,180);
line(290,50,290,180);

stroke(0);
line(50,140,50,180);
line(170,90,170,180);
line(290,120,290,180);

noStroke();

//the front of the background store
fill(11,54,36);
rect(0,200,400,320);

//the two black thin pillars on the front of the store

stroke(0);
strokeWeight(10);
line(170,200,170,520);
line(230,200,230,520);

//the two black windows on the front of the store
strokeWeight(100);
line(80,230,80,480);
line(320,230,320,480);

noStroke();

//ground 1
fill(130,137,134);
rect(0,520,400,160);

//ground 2
fill(53,96,106);
quad(0,680,400,680,800,800,0,800);

//the waiter in white
fill(255);
beginShape();
curveVertex(880,500);
curveVertex(880,500);
curveVertex(940,510);
curveVertex(965,540);
curveVertex(970,580);
curveVertex(970,580);
endShape();

ASSIGNMENT 2: PATTERNS

Assignment 2 follows the same process but the design can be abstract and needs to
contain patterns. The implementation therefore requires loops.

/*
Thu Truong Assignment 2
Composition inspired by the shapes, colors, and
their meanings drawn by Alexander Calder
I named it "Intrusion."
Date: March 24, 2014
*/

size(800, 500);
background(255);

color red = color (227, 32, 32);
color yellow = color (249, 252, 54);
color blue = color (60, 107, 213);

smooth();
float lineThickness = 15;

// tiny points, nested loop
for (int y = 0; y <= 300; y = y + 3)
 for (int x = 300; x <= width; x = x + 3)
 point(x, y);

//blue rectangle
fill(blue);
rect(300, 300, 500, 200);

//3 small red ellipses
strokeWeight(lineThickness/3);
fill(red);
ellipse(575, 130, 140, 140);
ellipse(655, 400, 80, 80);
ellipse(760, 200, 50, 50);

//yellow ellipse
fill(yellow);
ellipse(350, 300, 300, 300);

//white ellipse on top of the yellow ellipse
//together they create a crescent shape

fill(255);
ellipse(250, 300, 300, 300);

//white rectangle on the left, below the bars
noStroke();
rect(0, 0, 300, height);

//bars, 2nd loop
stroke(0);
for (int lineX = 0; lineX < 280; lineX +=33){
 strokeWeight(lineThickness);
 line (lineX, 0, lineX, height);
}

strokeWeight(lineThickness/3);
line(300, 0, 300, 500);

//horizontal line
strokeWeight(lineThickness/2);
line(250, 300, width, 300);

//random small blue circles
//3rd loop, random function
strokeWeight(lineThickness/3);
fill(blue);
float circleX = 0;
float circleY = 0;
int circleSize = 40;

for (int i = 0; i < 8; i++) {
 circleX = random (270);
 circleY = random (height);
 ellipse(circleX, circleY, circleSize, circleSize);
}

//multiple concentric ellipses with a red one in middle
//4th loop, if conditional
int ellipseX = 250;
int ellipseY = 300;
int ellipseSize = 300;

int ellipseGap = 40;

for (int i = 0; i <= 3; i++){
 if (i != 3) fill(255);
 else fill(red);

 strokeWeight(lineThickness);
 ellipseSize = ellipseSize - ellipseGap;
 ellipse(ellipseX, ellipseY, ellipseSize, ellipseSize);
 lineThickness = lineThickness / 1.4;
}

lineThickness = 15;

// yellow triangles along vertical line
fill(yellow);
strokeWeight(lineThickness/3);
triangle(250, 0, 300, 0, 300, 50);
triangle(300, 50, 350, 100, 300, 150);
triangle(250, 500, 300, 500, 300, 445);

// horizontal yellow triangles
//5th loop, if conditional
int upperX1 = 500;
int upperX2 = 525;
int upperX3 = 550;
int lowerX1 = 550;
int lowerX2 = 575;
int lowerX3 = 600;

int upperY = 270;
int baseY = 300;
int lowerY = 330;

int triangleBase = 50;

for(int i = 0; i <= 5; i++) {
 if (i % 2 != 0) {
 triangle(upperX1, baseY, upperX2,
 upperY, upperX3, baseY);

 upperX1 = upperX1 + triangleBase*2;
 upperX2 = upperX2 + triangleBase*2;
 upperX3 = upperX3 + triangleBase*2;
 } else {
 triangle(lowerX1, baseY,
 lowerX2, lowerY, lowerX3, baseY);
 lowerX1 = lowerX1 + triangleBase*2;
 lowerX2 = lowerX2 + triangleBase*2;
 lowerX3 = lowerX3 + triangleBase*2;
 }
}

//PHEW!!
save("truon22a_a2.png");

ASSIGNMENT 3: ANIMATIONS

Assignment 3 includes function definitions to draw similar objects (varying their size
and/or color), animation and mouse/keyboard interactions.

DISCUSSION

During the term student’s enthusiasm guided the course development: they were keen
to learn new concepts to make complex designs; they frequently asked about graphics
research. They requested to learn about gradient for Assignment 1! They enjoyed
discussing the contrast between their work and the 3D equivalent.

Students were surprised by the approach and methodology of the course. They didn’t
expected programming to be so fun and computer science to involve creativity. They
wholeheartedly embraced the course, which changed their view of computer science.

Most important several students expressed unprompted interest in taking a follow-on
course. Two students were part of a team of five who went to the 36 hours hacking at
Yale University the following November.

• What is their view of computer science one year later?
• Was the women classroom a contributor to this special experience?
• How does this curriculum compare to other CS0 which use a visual approach?

The process described in Picture This: How Pictures Work
by Molly Bang instructs design concepts. The sequence of
pictures represents an iteration, contrasting alternative, to
achieve the atmosphere for the Little Red Riding Hood.

INSPIRATION

Thu Truong image: her
first-ever programming
assignment.

Mount Holyoke College,
CS100, Spring 2014

Nighthawks (1942) by Edward Hopper

FORMAL ANALYSIS

Pierre-Auguste Renoir
(French, 1841–1919)
Dance at Bougival, 1883

Size 181.9× 98.1 cm
Material oil on canvas

Example from a book by Jesse Day
Line Color Form: The language of Art & Design

FORM FUNCTION

Line soft, broad brushstrokes memory; experience
blended, blurred ≈ motion & mood

Color black/navy blue suit balance male & female energy
palette cream/tea rose dress nature and human emotion

+ golden vs. red scarlet hats excitement around heads
backgd. unsaturated ochre, baby blue couple is part of environment
Compo- couple dominates frame couple = undeniable focus
sition figures gaze to each other viewer = voyeur

PAPER COLLAGE

Collages made by students before coding based on the artwork of
Alex Katz: Late July 2, 1971 & Moose, 1983.

IN PROGRESS: TURNING INTO CODE

/*
Thu Truong Assignment 2
Composition inspired by the shapes, colors, and
their meanings drawn by Alexander Calder
I named it "Intrusion."
Date: March 24, 2014
*/

size(800, 500);
background(255);

color red = color (227, 32, 32);
color yellow = color (249, 252, 54);
color blue = color (60, 107, 213);

smooth();
float lineThickness = 15;

// tiny points, nested loop
for (int y = 0; y <= 300; y = y + 3)
 for (int x = 300; x <= width; x = x + 3)
 point(x, y);

//blue rectangle
fill(blue);
rect(300, 300, 500, 200);

//3 small red ellipses
strokeWeight(lineThickness/3);
fill(red);
ellipse(575, 130, 140, 140);
ellipse(655, 400, 80, 80);
ellipse(760, 200, 50, 50);

//yellow ellipse
fill(yellow);
ellipse(350, 300, 300, 300);

//white ellipse on top of the yellow ellipse
//together they create a crescent shape

fill(255);
ellipse(250, 300, 300, 300);

//white rectangle on the left, below the bars
noStroke();
rect(0, 0, 300, height);

//bars, 2nd loop
stroke(0);
for (int lineX = 0; lineX < 280; lineX +=33){
 strokeWeight(lineThickness);
 line (lineX, 0, lineX, height);
}

strokeWeight(lineThickness/3);
line(300, 0, 300, 500);

//horizontal line
strokeWeight(lineThickness/2);
line(250, 300, width, 300);

//random small blue circles
//3rd loop, random function
strokeWeight(lineThickness/3);
fill(blue);
float circleX = 0;
float circleY = 0;
int circleSize = 40;

for (int i = 0; i < 8; i++) {
 circleX = random (270);
 circleY = random (height);
 ellipse(circleX, circleY, circleSize, circleSize);
}

//multiple concentric ellipses with a red one in middle
//4th loop, if conditional
int ellipseX = 250;
int ellipseY = 300;
int ellipseSize = 300;

int ellipseGap = 40;

for (int i = 0; i <= 3; i++){
 if (i != 3) fill(255);
 else fill(red);

 strokeWeight(lineThickness);
 ellipseSize = ellipseSize - ellipseGap;
 ellipse(ellipseX, ellipseY, ellipseSize, ellipseSize);
 lineThickness = lineThickness / 1.4;
}

lineThickness = 15;

// yellow triangles along vertical line
fill(yellow);
strokeWeight(lineThickness/3);
triangle(250, 0, 300, 0, 300, 50);
triangle(300, 50, 350, 100, 300, 150);
triangle(250, 500, 300, 500, 300, 445);

// horizontal yellow triangles
//5th loop, if conditional
int upperX1 = 500;
int upperX2 = 525;
int upperX3 = 550;
int lowerX1 = 550;
int lowerX2 = 575;
int lowerX3 = 600;

int upperY = 270;
int baseY = 300;
int lowerY = 330;

int triangleBase = 50;

for(int i = 0; i <= 5; i++) {
 if (i % 2 != 0) {
 triangle(upperX1, baseY, upperX2,
 upperY, upperX3, baseY);

 upperX1 = upperX1 + triangleBase*2;
 upperX2 = upperX2 + triangleBase*2;
 upperX3 = upperX3 + triangleBase*2;
 } else {
 triangle(lowerX1, baseY,
 lowerX2, lowerY, lowerX3, baseY);
 lowerX1 = lowerX1 + triangleBase*2;
 lowerX2 = lowerX2 + triangleBase*2;
 lowerX3 = lowerX3 + triangleBase*2;
 }
}

//PHEW!!
save("truon22a_a2.png");

LIMITATION

Such collage & diagrams process using simple shapes can
be unsatisfactory for a tangled & organic artwork.

Adolph Gottlieb
(American, 1903–1974)

Orange Glow, 1970
Acrylic on paper
60.6× 47.9 cm
Nongeometric textures, shapes
with irregular boundaries.

CONCLUSIONS
Through this process of deciding what simple shapes to use
to demonstrate these complex paintings, students learn how
to abstract complicated problems not only for programming
but also for other subjects.

We are exploring this exercise as a potential method to teach
CS0 in the liberal arts. This creative and interdisciplinary
process may appeal to a wide range of students.

We would like to thanks Melissa Davies and Sarah Horowitz
from the Picker for all their support.

