
16 17

A liberal arts education aims to mediate between today’s

technology and the spirit of humanism. In my classroom, where I integrate

art into computer science, students benefit from easy access to the Picker

Art Gallery and its collection. Encountering original works in the Picker

is a much richer and more satisfying experience than viewing art through

books, reproductions, or the Internet. The gallery environment promotes

the contemplative attitude that opens one’s mind to a work of art. It also

encourages an intimate exploration of the surface of a work of art, an

element celebrated by many contemporary painters.

To take advantage of this rich resource in a first-year seminar

I will teach next year, I have asked four computer science students

to write programs responding to paintings from the Picker collection.

Nianyi Wang ’18 and Jingxian Wu ’18 wrote programs in response to

Alex Katz’s Late July 2 (1971) and Moose (1983), respectively, while Samantha

Braver ’18 and Lillian Pentecost ’16 engaged with works by Alice Neel and

Adolph Gottlieb.

.

FIG. 1 | Composition by Thu Truong ’14

(Mount Holyoke College) based on Nighthawks

(1942) by Edward Hopper

Computers are ubiquitous in the everyday life of art and artists, from

digitized art history and new media to the laptop on which I am

writing this essay. They all depend on computer science, an applied

discipline investigating the algorithms, data, networks, and systems

from which practical tools are built—tools that help experts in other

disciplines to solve problems. In this sense, computer science is

necessarily interdisciplinary. Every computer scientist must be capable

of comprehending the essence of the domain in which her products

will be used. Thus, computer science responds vigorously to the broad

expectations we have of a liberal arts education.

From introductory programming to specialized advanced

courses, students need a creative framework that engages them and

releases their open-ended personal ambitions. In the past I had

students write programs that drew images based on works of art of

their choice. Figure 1 is a composition by Thu Truong ’14 (Mount

Holyoke College), written in the Processing programming language,

based on Nighthawks (1942) by Edward Hopper (American, 1882–
1967)—her first-ever programming assignment.

When students start this process, they must reflect on their

chosen artwork, think, and plan before programming. They begin

with pencil and paper, acquiring ownership of the image, enhancing

their commitment to the process, and strengthening their experience

of art and its relationship to their scientific practice. Encouraging

students to practice and appreciate contemplative work—a challenge

for novice programmers, who are inclined to frantically rush coding

as quickly as possible and without pause—makes them better

programmers. Innovative practitioners of computer science must stand

back from their work to think and rework their software designs—

like Michelangelo, chisel in hand, standing back from the half-finished

David, or Jackson Pollock taking a moment to refect before adding

another layer of paint on his canvas.

Programming shares an interesting relationship with

composition, art history, and studio technique. All of these areas

are primarily learned by doing: in art history, “looking” is “doing.”

Incorporating art into the “doing” of computer science is natural and

beneficial. In addition, both computer science and art encourage

learning from others, taking inspiration from individual experience and

sensibility. Since time immemorial artists have been inspired by nature,

creating images and artifacts that embody the inner lives of individuals

and the common life of society. The rhinoceros that first appeared

in the Lascaux cave paintings has been the subject of a woodcut by

Albrecht Dürer, paintings by Salvador Dalí, and a red resin sculpture

by Xavier Veilhan (French, born 1963), shown today at the Pompidou

Center in Paris.

P
ro

g
ra

m
s

fr
o

m
 A

rt
E

lo
d

ie
 F

o
u

rq
u

e
t

A
ss

is
ta

n
t

P
ro

fe
ss

o
r

o
f

C
o

m
p

u
te

r
S

ci
e

n
ce

18 19

CAT. 6

Adolph Gottlieb (American, 1903–1974)

Orange Glow, 1970

Acrylic on paper

23³⁄₄ × 18³⁄₄ in. (60.3 × 47.6 cm)

Gift of Dr. Luther W. Brady H’88, 1992.59

Orange Glow by Adolph Gottlieb

first presents a simplicity, but a

simplicity that is illusionary. Further

observation of the painting allows

us to see the complexity of its formal

elements.

The painting is a challenge for a

student creating a computer-generated

image inspired by it. The artwork

appears simple and abstract in color

and form but is actually composed

of nongeometric textures and shapes

with irregular boundaries. These

features make the work very difficult

to recreate with computer graphics

techniques. For example, the irregular

lines surrounding the upper circle

in the painting are too regular to be

generated by random numbers but too

irregular to be generated by a precise,

iterative method that would calculate a

predictable distribution of shapes.

Gottlieb’s lines and shapes are tangled

and organic, intentionally unclear and

irregular. Imposing straight lines or

uniform texturing, which are easy to

do with most computer graphics tools,

would rob the work of its emotional

power if done insensitively. Thus,

intensive study of the work was neces-

sary to understand its composition,

particularly the artist’s use of under-

painting, before attempting a program

in response. I made creative decisions

to simplify and reinterpret Orange

Glow so that the overall effect, texture,

and pattern of the painting were

retained. This example highlights how

a programmer who is aware of artistic

considerations and mindful of more

than just the physical appearance of

a work may produce a successful repro-

duction and nurture artistic apprecia-

tion otherwise not present in computer

science curricula.

—lillian pentecost ’16

CAT. 5

Alice Neel (American, 1900–1984)

Girl in Pajama Suit, 1945

Oil on canvas

22¹⁄₂ × 26¹⁄₂ in. (57.2 × 67.3 cm)

Gift of Edwin J. Safford ’58, 1991.49’

Girl in Pajama Suit is an oil painting

by Alice Neel, who is well-known

as a portraitist. I was initially drawn to

the work by its colors: red, mauve,

and periwinkle blue. On second look,

I was also intrigued by the expression

on the girl’s face.

In building a computer-generated

image that responds to Neel’s painting

I faced two creative decisions. First,

the meaning and power of most

figurative painting emerges from a

wealth of subtle details, a wealth that

risks seeming ironic when simulated

by a computer. Finding a level of

abstraction appropriate to the available

programming tools was a challenge.

Does a single triangle suffice to

represent an arm? Or must I build it

from multiple primitives, or perhaps

more complex rounded objects? How

will the perception of the work change

if I include eyes?

Such questions led inevitably to my

second challenge: How should I

combine the characteristics that are

easily manipulated using a computer—

color, shape, and level of detail—

to interpret of the original painting?

I was inspired to explore these pictorial

aspects through my reading of Molly

Bang’s book Picture This: How Pictures

Work. (New York: Chronicle, 2000).

Observing the original painting in

the Picker Art Gallery collection added

more dimensions to my experience

of the picture—and to my ambition

in responding to it. Being able to work

closely with the painting, I was able

to examine its true colors, brush strokes,

and textures. This contemplation

broadened my appreciation for the

work and the project as a whole.

—samantha braver ’18

Copyright image removed Copyright image removed

