
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial

Aut
ho

r's

pe
rs

on
al

co

py

Laboratory-based calibration of available bandwidth estimation tools

Joel Sommers a,*, Paul Barford a, Walter Willinger b

a University of Wisconsin-Madison, Madison, WI, USA
b AT&T Labs-Research, Florham Park, NJ, USA

Available online 13 January 2007

Abstract

Examining the validity or accuracy of proposed available bandwidth estimation tools remains a challenging problem. A common
approach consists of evaluating a newly developed tool using a combination of simple ns-type simulations and feasible experiments
in situ (i.e., using parts of the actual Internet). In this paper, we argue that this strategy tends to fall short of establishing a reliable
‘‘ground truth,’’ and we advocate an alternative in vitro-like methodology for calibrating available bandwidth estimation tools that
has not been widely used in this context. Our approach relies on performing controlled laboratory experiments and using a set of tools
to visualize and analyze the relevant tool-specific traffic dynamics. We present a case study of how two canonical available bandwidth
estimation tools, SPRUCE and PATHLOAD, respond to increasingly more complex cross traffic and network path conditions. We expose
measurement bias and algorithmic omissions that lead to poor tool calibration. As a result of this evaluation, we designed a calibrated
available bandwidth estimation tool called YAZ that builds on the insights of PATHLOAD. We show that in head to head comparisons with
SPRUCE and PATHLOAD, YAZ is significantly and consistently more accurate with respect to ground truth, and reports results more quickly
with a small number of probes.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Available bandwidth; Active measurement; Calibration; YAZ

1. Introduction

Calibration strategies for Internet measurement tools
are essential for detecting inaccuracy in the underlying
data, and misconceptions or errors in their analysis [1].
In this paper, we propose and investigate a set of calibra-
tion techniques that can greatly increase our confidence
in the validity and accuracy of end-to-end available band-
width estimation tools (ABETs). Echoing the same senti-
ment as expressed by Paxson in [1], tool calibration is not
meant to achieve perfection. Rather, it is to aid in our
understanding of the tools and their applicability by pro-
ducing results that are close to the ‘‘ground truth.’’ Cali-
bration may also illuminate the circumstances under
which the tools may give inaccurate results.

There are two conventional and complementary aspects
to calibration: comparison with a known standard, and (if
necessary) adjustment to match a known standard. The first
notion encompasses the task of comparing the output of a
measurement tool with ‘‘ground truth’’ – a known quantity
like the reading of an accurate and precise device. For
ABETs, this activity involves comparison with measure-
ments of available bandwidth (AB) that have been
obtained through, e.g., packet traces with timestamps of
sufficient quality. The second facet of calibration involves
changing some feature of a measurement tool so its output
matches a standard as closely as possible. In the context of
ABETs, this aspect of calibration may involve adjusting
parameters of a given algorithm, or the algorithm itself.

Traditional approaches for calibrating and validating
ABETs almost always employ two basic strategies. One is
the use of simple ns-type simulations, and the second con-
sists of small-scale experiments in the ‘‘wild,’’ i.e., largely
uncontrolled tests that use a small set of paths in the live
Internet. Ns-type simulations are attractive since they have

0141-9331/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.micpro.2006.12.004

* Corresponding author.
E-mail addresses: jsommers@cs.wisc.edu (J. Sommers), pb@cs.wisc.

edu (P. Barford), walter@research.att.com (W. Willinger).

www.elsevier.com/locate/micpro

Microprocessors and Microsystems 31 (2007) 222–235

Aut
ho

r's

pe
rs

on
al

co

py

the advantage of simplified implementations and complete
experimental control. However, by definition they are an
abstraction of networking reality [2,3] which may render
their results largely irrelevant in situations when the details
of live system and protocol implementations or traffic con-
ditions have little in common with their simulation-based
counterparts. In contrast, experiments that use paths in
the live Internet encounter networking systems, protocols
and traffic conditions (depending on the part of the Inter-
net to which they are confined) similar to what would be
expected in other paths of the network. However, experi-
ments run in the wide area are largely uncontrolled and
typically lack the necessary instrumentation for establish-
ing a reliable standard against which results can be com-
pared and understood. While networking researchers
have been generally aware of the pros and cons of these
two strategies, the lack of realism in ns-type simulations
and the lack of control and instrumentation in the wide
area cast serious doubts on these predominant approaches
to ABET calibration and validation, and highlight the need
for improved calibration strategies.

In this paper, we investigate an alternative ABET cal-
ibration strategy based on conducting experiments in a
laboratory setting that is amenable to establishing the
‘‘ground truth’’ for a great variety of Internet-like sce-
narios. This setting should include, wherever possible,
the use of actual hardware found on end-to-end paths
in the Internet (e.g., routers, switches, etc.), the use of
various versions of the full TCP/IP protocol stack, work-
load generators capable of exercising systems over a
range of realistic conditions, and measurement devices
that provide a level of accuracy suitable for establishing
ground truth. By advocating such an in vitro-like exper-
imental environment, we combine the advantages of
ns-type simulations (i.e., complete control and full instru-
mentation) with those offered by experiments in the wide
area (i.e., more realistic network systems, protocols and
traffic dynamics). Laboratory-based calibration tech-
niques are established in other scientific disciplines such
as chemistry and biology but they have not seen wide-
spread application to network measurement tools. While
the focus of this paper is on a calibration strategy in the
context of ABETs, our future plans include investigating
generalizations to our approach to additional active mea-
surement-based tools that attempt to infer network-inter-
nal characteristics.

Estimating the AB along a network path is a topic that
has received considerable attention in recent years [4–13].
Informally, end-to-end available bandwidth (AB) is defined
as the minimum spare capacity on an end-to-end path
between a sender and receiver. To calibrate and validate
ABETs, a detailed understanding of realistic queuing
effects experienced by individual packets as they compete
and interact with other packets is essential, and requires
fine-grained, time-synchronized measurements of packets
as they arrive at and subsequently depart from the different
routers along the network path.

We address the need for analyzing such detailed mea-
surements from an instrumented laboratory setting with
multiple tools, including phase plot analysis [14]. Phase
plots enable visualization and analysis of a variety of com-
plex network traffic behavior at different levels of granular-
ity (e.g., from packets to flows to more application-specific
quantities) and over a range of time scales. Our approach
to phase plot analysis is based on taking measurements
of the spacings between consecutive packets in individual
packet streams as they enter a router and then as they exit
that same router. We use these measurements as the x- and
y-coordinates of points in the 2D ingress–egress space. The
resulting phase plots enable a transform-free representation
of how the spacings between individual packets change as
these packets pass through a router. This simple represen-
tation can provide surprisingly rich insights into a wide
variety of network behavior. Within the context of ABETs,
we advocate phase plot analysis as a natural means for
assessing two characteristics critical to measurement tool
calibration. The first is the ability to identify and isolate
sources of bias in active measurement tools themselves.
The second is the ability to assess the basic design assump-
tions of ABETs concerning the nature of complex queuing
effects that individual packets or flows experience at routers
as they traverse the network and interact with competing
traffic.

Using an openly available laboratory testbed [15], we
apply our calibration strategy through a series of experi-
ments to two ABETs, SPRUCE [13] and PATHLOAD [7], which
we consider to be canonical representatives of two basic
methods for ABE. We analyze the detailed arrival and
departure measurements available in our testbed, showing
why and how both tools are prone to measurement bias
and errors over a range of increasingly complex cross traffic
and network path conditions. With the insights gained
from analyzing the detailed arrival and departure measure-
ments, we designed and implemented a calibrated ABET,
called YAZ, that builds on the basic insights of PATHLOAD.
Through an additional set of laboratory-based calibration
tests, we show that (1) YAZ compares well with respect to
known measures of AB, (2) it is significantly more accurate
than both SPRUCE and PATHLOAD, while remaining much
less intrusive than PATHLOAD, and (3) it produces available
bandwidth estimates faster than the other tools. If PATH-

LOAD and SPRUCE represent a tradeoff between measure-
ment overhead and measurement accuracy, our results
for YAZ show that this tradeoff is not fundamental. For a
SPRUCE-like budget, YAZ is more accurate than PATHLOAD,
sometimes significantly so.

2. Background and related work

Dynamic estimation of end-to-end available bandwidth
(spare capacity) has important potential for network
capacity planning and network overlay monitoring and
management. Active measurement tools for estimating or
inferring AB are designed to send precisely crafted packet

J. Sommers et al. / Microprocessors and Microsystems 31 (2007) 222–235 223

Aut
ho

r's

pe
rs

on
al

co

py

pairs or streams and – by measuring perturbations of the
pairs or streams as observed at a receiver – to infer the
bandwidth available along a given end-to-end path. While
the development of fast and accurate ABETs is an active
area of research (see for example [4–13]), two recent tools,
PATHLOAD [7] and SPRUCE [13], represent the two most com-
mon strategies for probing and two appealing methods for
AB inference. Thus, these tools are the focus of our ABET
calibration study. A study related to ours, but with a focus
on evaluating ABETs in the context of high-speed links is
found in [12]. Additional contrasts are that our focus is cal-
ibration (and thus the mechanisms that lead to performance
differences between tools), not simply a head-to-head com-
parison of ABETs, that we use a much more varied range
of cross traffic, and that our experimental environment is
openly available. Furthermore, we used significantly more
precise measurements than router SNMP counters and
we created a new highly accurate and low-impact ABET
as a result of this work.

2.1. Definitions and overview of ABE techniques

The available bandwidth, A, of a single link is defined as
the amount of spare capacity over a given time interval, s.
If C is the link capacity and U(x) gives the instantaneous
link utilization (0 or 1) at time x, then the available band-
width over the time interval [t, t + s] is

A ¼ C 1� 1

s

Z tþs

t
UðxÞdx

� �
: ð1Þ

The end-to-end available bandwidth is then defined as the
minimum AB over all hops in the path:

A � minfAi : i 2 1; . . . ;Hg; ð2Þ

where H is the path length in (layer 3) hops.
The link with smallest AB is referred to as the tight link,

while the link with smallest capacity is called the narrow

link. These definitions avoid the ambiguous term bottleneck
link [7]. They also help to avoid any implicit assumption
that the tight link is necessarily the narrow link. We use
the term capacity in this paper to refer to the maximum
transmission rate at layer 3, assuming a maximum frame
size of 1500 bytes. For example, with standard Ethernet
there is a nominal (physical layer) transmission rate of
10 Mb/s. However, for each packet delivered from layer 3
for transmission, there is an additional overhead of 38
bytes from layers 1 and 2. Thus, the transmission rate
available to layer 3 is reduced to �9.75 Mb/s.

Existing tools for measuring AB are generally focused
on either estimating the amount of cross traffic on the tight
link, or on direct measurement of AB by sending probe
streams at various rates. Both methods are accomplished
by specifying an initial set of parameters, sending a series
of probes and measuring responses, and then inferring an
estimate of AB from the measurements. All methods for
measuring available bandwidth assume, for simplification,

a relatively homogeneous environment. First, they assume
FIFO queuing at routers. Second, they assume that cross
traffic is fluid (cross traffic packets are infinitely small).
Finally, cross traffic intensity is assumed to be stationary
over the measurement period.

2.2. SPRUCE

SPRUCE estimates AB by sending packet pairs spaced
back-to-back according to the capacity C of the tight
link.1 Assuming fluid cross traffic, the amount by which
the packet pairs are expanded by the tight link is propor-
tional to the volume of cross traffic. If gin is the spacing
of back-to-back probe packets on the tight link and gout

the spacing measured at the receiver, the AB is calculat-
ed as:

A ¼ C 1� gout � gin

gin

� �
: ð3Þ

SPRUCE sends, by default, 100 packet pairs at Poisson-mod-
ulated intervals, and reports the average A over those
samples.

2.2.1. SPRUCE limitations

The above formulation assumes that the tight-link
capacity (C) is known a priori. Clearly, negative AB esti-
mates are possible, although SPRUCE reports zero AB when
an estimate is negative. Also, through the course of a mea-
surement, it is unknown whether the estimate has yet con-
verged to the true AB (assuming some stationary average
exists).

Liu et al. [16] use a single-hop setting to analyze SPRUCE-
like techniques and the bias introduced by the fluid
assumption under a range of cross traffic conditions. They
claim that bias is minimized when the input gap gin is set to
less than or equal to the back-to-back spacing on the tight
link. However, a more complex topology with cross traffic
on the non-tight links may still introduce bias.

There are practical limitations when considering high-
bandwidth links. For the experiments discussed below,
the fastest narrow link we consider is an OC-3 (155 Mb/s
nominal transmission rate), which requires SPRUCE to send
its packet pairs spaced by approximately 80 ls. While we
will show that modestly provisioned hosts in our testbed
can accommodate this requirement, emitting packet pairs
to measure available bandwidth on OC-12 links
(622 Mb/s nominal), where packets must be sent with
spacing of 20 ls, borders on being infeasible with commod-
ity workstations.2

1 With SPRUCE, the tight link and narrow link are assumed to be the
same. Strauss et al. claim that the estimates may still be meaningful even
when this condition is not satisfied [13].

2 Assuming frame sizes larger than 1500 bytes are not used. See Shriram
et al. [12] for additional issues with ABE on high speed links.

224 J. Sommers et al. / Microprocessors and Microsystems 31 (2007) 222–235

Aut
ho

r's

pe
rs

on
al

co

py

2.3. PATHLOAD

PATHLOAD attempts to create short-lived congestion con-
ditions in order to measure AB. It detects congestion
through trends in one-way probe packet delays. Specifical-
ly, an increasing one-way delay (OWD) trend is assumed to
be indicative of queueing and that the probe stream rate is
greater than the end-to-end AB. Through iterative adapta-
tion of its probe stream rate, PATHLOAD converges on an
available bandwidth range, the center of which is the aver-
age spare capacity over the measurement period.

A simple way to describe the relationship between one-
way delay trends and available bandwidth is in terms of
probe stream rate. If L is the probe packet size (in bytes)
and gin the spacing between consecutive packets in a
stream, the probe rate (input rate) produced by PATHLOAD

is rin ¼ L � 8
gin

. An increasing one-way delay trend is equiva-
lent to saying that there is an increasing inter-packet spac-
ing trend, and an average increase in spacings causes the
overall probe rate measured at the receiver (rout) to be less
than that introduced at the sender (rin). Such a decrease is
taken as evidence that the end-to-end AB is less than the
probe stream rate. This relationship can be expressed as
follows:

rin

rout

¼
6 1 rin 6 A

> 1 rin > A

�
ð4Þ

PATHLOAD takes N measurements with probe streams of
length K packets, iteratively adapting its send rate to deter-
mine whether or not there is an OWD trend. These N

streams are referred to as a fleet. Each stream within a fleet
is separated by an amount of time designed to allow the
path to quiesce. By default, N is set to 12 and K to 100.
After each of the N streams, PATHLOAD uses two separate
metrics to estimate trends in OWD: the pair-wise compar-
ison test (PCT) and the pair-wise difference test (PDT). The
PCT and PDT metrics operate on blocks of C ¼

ffiffiffiffi
K
p

pack-
ets from each stream. For each block k, the median value,
D̂k, is chosen as a robust estimator of OWD. These metrics
are defined as follows:

APCT ¼
PC

k¼2 IðD̂k > D̂k�1Þ
C� 1

; ð5Þ

APDT ¼
D̂C � D̂1PC

k¼2 jD̂k � D̂k�1j
; ð6Þ

where I(x) is a function returning 1 if the condition x is
true, and 0 otherwise.

PCT returns a value between 0 and 1, where 0 indicates
that the stream has not experienced an increasing OWD
trend, and 1 indicates that, for k 2 ½2; . . . ;C�; D̂k > D̂k�1;
that is, there is a consistent increasing trend in OWD.
PDT detects whether there is a net increasing trend, consid-
ering only the first and last OWD samples. It returns a val-
ue between �1 and 1, where �1 indicates a strongly

decreasing OWD trend (i.e., the probe rate was measured
to be much higher at the receiver than was sent), and 1
indicates a strongly increasing OWD trend. For each
metric, a threshold value is chosen, above which the
OWD trend is said to be increasing. These thresholds
are 0.55 for PCT and 0.4 for PDT. The two metrics must
agree (either increasing or non-increasing OWD) on a
certain fraction of the streams in a fleet for an overall
judgment to hold (by default, this threshold is 0.6).
Otherwise, the result is inconclusive and additional fleets
are required. The specific algorithm for how the input
stream rate is modulated based on the outcome of the
PCT and PDT metrics is described in [7] and in the
source code to PATHLOAD.

2.3.1. PATHLOAD limitations

The PCT and PDT metrics, along with the specific
thresholds, assume congestion only takes the form of
increasing one-way delays, i.e., expansion in intra-stream
packet spacings. In [10], Paxson notes that while expansion
is the predominant result of queuing, compression events
commonly occur. Moreover, compression is the result of
packets earlier in a stream being held up, allowing subse-
quent packets to ‘‘catch up’’. Such a situation is indicative
of a queue that is draining, which at least suggests that con-
gestion existed in the very recent past. The PCT metric does
not consider compression, and the default threshold used
for the PDT metric eliminates compression as an indication
of congestion.

Like SPRUCE, ABETs that use self-loading techniques
may not be able to produce streams on commodity systems
that are sufficient for detecting AB at OC-12 link speeds
and above without using large frame sizes. Another poten-
tial problem is that congestion-inducing measurement tools
may cause significant and/or persistent packet loss during
use. To minimize impact, packet streams should be short
and should be spaced far enough apart for cross traffic
sources to recover from any losses. However, shorter
streams result in higher measurement variance, as noted
in [7,17]. An additional problem with longer streams is that
there is an increased possibility for operating system con-
text switches, causing a disruption in intended packet spac-
ings and invalidating that stream. PATHLOAD requires
threshold parameter selection in its OWD trend detection
algorithm. To date, there has been no study of sensitivity
of these metrics to different cross traffic, and default thresh-
olds were selected based on experience with network
simulations [7].

3. Calibration framework

Comparison with a standard and subsequent adjustment
of an ABET’s algorithm or parameters are complementary
activities of calibration. The basic task of comparing the
output of an ABET with the actual AB over a time interval
requires relatively simple measurements. However, to gain

J. Sommers et al. / Microprocessors and Microsystems 31 (2007) 222–235 225

Aut
ho

r's

pe
rs

on
al

co

py

insight into how an ABET arrives at a particular estimate
we require measurements and analysis suited to the probes
produced by an ABET and the reported measurements. We
also require appropriate test environments to evaluate
ABET accuracy over a range of controlled conditions
and to expose algorithmic or parametric assumptions that
may need adjustment.

As part of our framework, we offer a set of issues to con-
sider for ABET calibration:

(1) There are performance and predictability limitations
imposed by the operating system (OS) and hardware
(e.g., general purpose workstations with standard
network interface cards) running the measurement
tools. Two key considerations are whether probe
packet streams (specifically spacing between packets)
can be generated with sufficient fidelity, and if time
stamp accuracy (and in some cases, synchronization)
is sufficient.

(2) Assumptions about and/or abstract models for the
behavior of routers and switches in networks are
the foundation for inference methods used to inter-
pret active measurements. The diversity of the imple-
mentation details of those systems can limit the
effectiveness of the inference methods.

(3) Probes and response packets generated during active
measurement impose a load on the network which
can change the conditions on the path of interest
and potentially skew results.

(4) The heterogeneity and burstiness of traffic can extend
beyond the operating bounds of the tool.

(5) Many active probe tools require specification of a set
of parameters before they are used. A tool’s effective-
ness can be limited by its sensitivity to configuration
parameters.

The first two issues imply that certain assumptions,
while valid in simulation, may lead to unexpected behavior
when an ABET is deployed in live Internet environments.
Issues 3 and 4 imply that fully instrumented environments
are key for understanding the impact and reported mea-
surements of ABETs. The final issue identified above sug-
gests that tool calibration should be performed in a
controlled, yet realistic (to the extend possible)
environment.

3.1. Calibration strategy

To address the above issues, we advocate the use of lab-
oratory-based testbeds for calibrating ABETs. Such envi-
ronments provide an important set of capabilities not
offered by standard simulation [18] or in situ settings such
as PlanetLab [19], including repeatability, transparency,
and the use of actual systems and implementations of actu-
al protocols. The essence of our calibration strategy for this
study consists of the following.

(1) Design appropriate test environments where a stan-
dard can be established over a range of increasingly
complex, repeatable test conditions. Essential to thi
sfirst step is the availability of hardware that provides
measurements with a level of accuracy greater than
the ABET. Such accuracy is typically not available
for in situ studies.

(2) For the setups defined in the first step, identify rele-
vant test suites for assessing issues such as host sys-
tem capabilities, loading effects, and network system
behavior over a range of expected conditions. Real
systems are generally required to study such issues.

(3) The evaluation of data collected in the testbed should
be aided by flexible analysis and visualization tech-
niques that provide insight into relevant traffic
dynamics and, ultimately, the available bandwidth
process that the ABET attempting to measure or
infer.

Availability of open lab-based environments that deploy
general-purpose workstations and network systems is on
the rise [15,20,21]. Although similar environments have
been used successfully in recent studies [12,22], they are
not openly available to external researchers, and have seen
little use for calibration of ABETs. A possible concern in
this regard is the ability to conduct tests with ‘‘representa-
tive’’ traffic conditions in a lab environment. However,
tools such as [23–25] have addressed this problem to some
extent.

3.2. Calibration measurements and analysis

The interactions of ABET measurement probe packets
with cross traffic in the different routers along the end-to-
end path occurs on time scales that are typically in the
range of tens to hundreds of microseconds. To gain insight
into ABET behavior, we capture time-synchronized packet
headers before and after interaction between probes and
cross traffic at a congested queue. From these measure-
ments, we can compare how packet streams intended by
an ABET differ from the stream actually produced. From
the arrival measurements, we can construct a true measure
of AB over a given time interval as a standard by which to
judge an ABET.

To analyze the probe arrival (ingress) and departure
(egress) measurements, we use a phase plot representation
[14]. To construct the phase plot, we consider the time
delay between consecutive probe packets as they arrive at
the router (ingress spacing = si) as the x dimension
on the plot and consider the spacing of the same packets
as they exit the router (egress spacing = se) as the y dimen-
sion. From these measurements, there are three possibilities
for the ratio sr = se/si. If sr = 1 then spacing remained
unchanged by the router. If sr > 1 then other packets
enqueued between the two packets causing expansion. If
sr < 1 then the first packet was delayed because of a queue

226 J. Sommers et al. / Microprocessors and Microsystems 31 (2007) 222–235

Aut
ho

r's

pe
rs

on
al

co

py

that has diminished by the time the second packet arrives,
causing compression.

Fig. 1 depicts how we use phase plots for ABET calibra-
tion. The ingress dimension of the plot should reveal any
differences between spacings that are intended by the
ABET, and the spacings actually produced. This provides
the ability to assess bias introduced into the measurement
process by imprecise commodity hardware and operating
systems. The egress dimension of the plot shows the spac-
ings on which inferences are made by the receiver after
interaction with cross traffic, though they may differ from
the spacings actually measured by the receiver. Note that
while some ABETs do not make inferences directly from
these spacings (e.g., PATHLOAD), they play a key role in
what an ABET infers. Therefore, these spacings enable cal-
ibration of both the inference method as well as providing a
baseline for calibrating the receiving host.

4. Calibration experiments

The objective of our calibration study of PATHLOAD and
SPRUCE was to examine the tools under a number of increas-
ingly more complex traffic and path conditions and to
understand where they work well and where they work
poorly, and why. In each experiment we evaluate the tool’s
ability to report AB within a range of 10% of the tight link
capacity. This threshold is chosen as an arbitrary reference
point in the sense that a threshold would typically be cho-
sen based on specific requirements of a target application.
We required that estimates be consistently within this win-
dow of accuracy for a series of estimates reported by an
ABET over the duration of an experiment. Without the
property of consistent accuracy, ABETs are unlikely to be
used in applications such as in re-optimization of an over-
lay network.

4.1. Testbed setup

Our primary testbed configuration consisted of varia-
tions on a dumbbell-like topology with an OC-3 narrow

link as depicted in Fig. 2. We used a total of six setups,
including three traffic scenarios: constant bit-rate (CBR)
traffic of 50 Mb/s (UDP traffic with uniformly spaced
1500 byte packets), 19 long-lived TCP flows in a single
direction, 19 long-lived TCP flows in each direction, and
three variants of a setup using web-like traffic with file sizes
drawn from a heavy-tailed distribution to produce self-sim-
ilar traffic. In all cases, the direction of interest was left to
right in the figure (i.e., CBR, single direction long-lived
TCP connections, and web-like traffic traveled left to
right). Cross traffic was generated by hosts running Har-
poon [25] (web-like traffic) or Iperf [26] (infinite source
and constant bit-rate traffic).3 We used an Adtech SX-14
hardware propagation delay emulator configured to add
a delay of 10 ms in each direction for all experiments.

To create increasingly more complex path conditions,
we considered the following three topological setups.

4.1.1. Topology 1 (narrow and tight link are the same,
homogeneous round-trip time)

Probe traffic was configured to cross the Gigabit Ether-
net link directly connecting routers at hops A and C. No
cross traffic was routed across this link. CBR and long-
lived TCP connection traffic crossed the Cisco 12000 at
hop B, while web traffic was configured to use the two Cis-
co 7200’s and the Cisco 12000 at hop B, but not the direct
link to hop C. Our decision to route probe traffic direction
from hop A to hop C caused the tight link and narrow link
to be identical in the CBR, long-lived TCP source, and
basic web-like traffic scenarios. When using web-like cross
traffic in this setup, we configured Harpoon to produce an
average of 50 Mb/s.

4.1.2. Topology 2 (narrow and tight link are not the same,

homogeneous round-trip time)

Using web-like cross traffic, we routed probe traffic
across a Fast Ethernet link between hops A and B, but con-
figured cross traffic not to use this link. In this experiment,
we also configured the cross traffic sources to produce
approximately 100 Mb/s of traffic on the OC-3 link
between hops D and E, causing the Fast Ethernet link to
be the narrow link, but the OC-3 to be the tight link.4

4.1.3. Topology 3 (narrow and tight link are not the same,

heterogeneous round-trip time)

Using again web-like cross traffic, we configured our
Linux traffic generation hosts with NetPath [27] to emulate
round-trip times of 20, 50, 80 and 110 ms. We also attached

by ABET

produced by ABET
spacings actually
range of pair or stream

ingress spacing

stream spacings
after interaction
with cross traffic

spacing intended

eg
re

ss
 s

pa
ci

ng

range of pair or

s(r) > 1:
expansion

compression
s(r) < 1:

Fig. 1. Application of phase plots to available bandwidth estimation tool
analysis and calibration.

3 Our traffic generator hosts were identically configured workstations
running either Linux 2.4 and FreeBSD 5.3. The workstations had 2 GHz
Intel Pentium 4 processors, 2 GB of RAM and Intel Pro/1000 cards (with
interrupt coalescence disabled). Each system was dual-homed, so that all
management traffic was on a network separate from the one depicted in
Fig. 2. Probe traffic systems were identical to the traffic generators and ran
FreeBSD 5.3.

4 We verified in each experiment that, over each tool measurement
interval, the tight link was always the OC-3 link.

J. Sommers et al. / Microprocessors and Microsystems 31 (2007) 222–235 227

Aut
ho

r's

pe
rs

on
al

co

py

additional hosts at hops A, C, and D to generate cross traf-
fic that traveled across all links between hops A and C
(sharing the link with probe traffic) or the OC-12 link
between hops C and D.

Critical to our calibration methodology was the ability
to take high accuracy measurements in our test environ-
ment. To do this we attached optical splitters and En-dace
DAG 3.5 packet capture cards (affording timestamping
accuracy on the order of single microseconds [28]5) to mon-
itor the links between hops C and D, and hops D and E.
We used these monitoring points to create phase plots
and measure utilization on the tight OC-3 link. This config-
uration gave us ground truth measurements well beyond
the coarse-grained SNMP measurements used in prior
in situ studies of ABETs.

4.2. ABET calibration: Comparison

The calibration framework described in Section 3 directs
our evaluation process. We begin by assessing the capabil-
ities of the end hosts running the ABETs. Sources of poten-
tial bias introduced by end hosts include OS context
switches and other system capability/OS effects such as net-
work adapter interrupt coalescence [7,29,30]. Our interest is
not in untangling the details of each source of host system
bias, rather it is in understanding the overall impact.

In our experiments below, we considered topology 1 and
collected traces from a single PATHLOAD fleet (1200 probe
packets of 1309 bytes), and a series of 12 SPRUCE runs
(1200 packet pairs, each packet of length 1500 bytes) with
constant bit rate cross traffic of 50 Mb/s flowing across the

narrow link during each test. If the host systems emitted
packets without bias, we would expect ingress spacings
for both tools to be tightly clustered around the intended
value of 80 ls.

The phase plots for these experiments shown in Fig. 3
immediately expose two potential sources of measurement
bias. First, it is easy to see that for each ABET there is a
wide range of interpacket spacings on ingress which can
be attributed to the sending host. Second, it is also evident
that an effect of the CBR cross traffic is to cause a respacing
of probe packets on egress to either back-to-back (70 ls for
PATHLOAD packets, 80 ls for SPRUCE packets) or with one
cross traffic packet interposed (150 ls for PATHLOAD,
160 ls for SPRUCE). Closer examination reveals that packets
spaced farther apart by the ABET are more likely to expe-
rience expansion by a cross traffic packet than to be trans-
mitted back-to-back on the tight link. This can be seen in
Fig. 3a by the perceptible shift to the right in the upper
cluster of points. A similar shift exists in Fig. 3b. Finally,
we note that points below the diagonal line in Fig. 3a rep-
resent evidence for compression in PATHLOAD streams. We
quantify the prevalence of this effect below.

To further explore the problem of bias imposed by
probe senders, we collected several thousand packet spac-
ing measurements from SPRUCE and PATHLOAD and com-
pared each spacing with the spacing measured at the
DAG monitor between hops C and D. Fig. 4a shows a rep-
resentative histogram of differences between the spacing
measured using gettimeofday () at PATHLOAD.6 From these
measurements, we conclude that while the magnitude of
individual errors can be quite significant, the mean devia-
tion is close to zero.

Next, we examined the measurements at the receiving
application. PATHLOAD timestamps outgoing/incoming
packets using the gettimeofday () operating system

(additional cross traffic experiment)
traffic generator hosts

OC3
Si

FE OC3
Cisco 7200

Cisco 7200

probe sender

traffic generator hosts

(additional cross traffic experiment)
traffic generator hosts

traffic generator hosts

probe receiver

A B C D E F
identifier

hop

propagation delay
emulator

(10 milliseconds
each direction)

Adtech SX14

OC3

Cisco 12000 Cisco 6500

GE
GE

Cisco 12000

DAG measurement system

OC12

Cisco 12000

Cisco 12000

OC12

OC3FE

GE

Cisco 6500
GE

GE
Si

Fig. 2. Experimental testbed. Cross traffic scenarios consisted of constant bit-rate traffic, long-lived TCP flows, and bursty web-like traffic. Cross traffic
flowed across one of three routers at hop B, while probe traffic normally flowed directly between hops A and C over a Gigabit Ethernet (GE) link. In a
setup forcing the narrow and tight links to be distinct physical links, probe traffic crosses a Fast Ethernet (FE) link between hops A and B. In a setup
considering additional web-like cross traffic, hosts shown attached at hops A, C, and D generate traffic that persists on shared links for one hop. Optical
splitters connected Endace DAG 3.5 or 3.8 measurement cards to the testbed between hops C and D, and hops D and E. The bulk of cross traffic and
probe traffic flowed left to right.

5 As a consistency and calibration check, we also captured traces using
Endace DAG 3.8 cards, which employ a higher frequency clock, and have
somewhat different architectural features than the DAG 3.5. The resulting
phase plots were consistent with those produced using the DAG 3.5.
Experiments described below employ the DAG 3.5 cards unless otherwise
specified. 6 We modified SPRUCE and PATHLOAD to log these timestamps.

228 J. Sommers et al. / Microprocessors and Microsystems 31 (2007) 222–235

Aut
ho

r's

pe
rs

on
al

co

py
call. SPRUCE timestamps outgoing packets using the
gettimeofday () system call and incoming packets
receive timestamps in the OS interrupt handler. Time-
stamps used for both these tools are of microsecond preci-
sion (though not necessarily microsecond accuracy).
Comparing timestamps measured upon packet receive with
timestamps measured at the DAG monitor between hops
D and E (i.e., the egress spacings of Fig. 3 compared with
application-measured receive spacings), we obtain a result
similar to the sender. Fig. 4b shows a representative histo-
gram of differences in packet spacings measured at the
probe receiver versus the same spacings measured at the
DAG monitor. The magnitude of error is smaller than that
on the sender and the mean deviation is close to zero.

As a final calibration check, and to test whether these
results were unique to the hardware and OS configuration
used, we attached a DAG 4 (Gigabit Ethernet) monitor
directly to the Intel Pro/1000 on a Linux 2.4 workstation
and collected additional measurements using SPRUCE. A
histogram of differences between spacings measured at

SPRUCE and spacings measured at the DAG 4 is shown in
Fig. 4c. Again, the mean deviation is close to zero. Packet
receive errors on the Linux 2.4 system (not shown) are also
close to zero mean. Table 1 summarizes these results.

Even though the averaged behavior of probe streams
tends toward the intended value, bias on individual probes
can still have a significant detrimental effect on the opera-
tion of PATHLOAD and SPRUCE. Since the source code for
each tool treats each timestamp as accurate, while utilizing
the microsecond precision supplied by the gettimeofday ()
system call, even very tiny differences may lead to poor
AB estimation. Also, since errors are widely distributed
around zero and may not be uniformly distributed, simple
filtering schemes may be ineffective.

4.3. ABET calibration: Algorithmic adjustment

Although phase plots are not new to the networking
community, as illustrated above, their use in ABET cali-
bration has been very beneficial. They not only helped us

0 usec 40 usec 80 usec 120 usec 160 usec 200 usec

0
us

ec
40

 u
se

c
80

 u
se

c
12

0
us

ec
16

0
us

ec
20

0
us

ec

ingress spacing

eg
re

ss
 s

pa
ci

ng

0 usec 40 usec 80 usec 120 usec 160 usec

ingress spacing

eg
re

ss
 s

pa
ci

ng

0
us

ec
40

 u
se

c
80

 u
se

c
12

0
us

ec
16

0
us

ec

ingress spacing relative density

egress spacing relative density

ingress spacing relative density

egress spacing relative density

Fig. 3. Phase plots of PATHLOAD and SPRUCE streams. Grid lines are separated by 20 ls for each plot. CBR cross traffic of 50 Mb/s, with uniform UDP
packets 1500 bytes (not shown in plots) causes bimodal output spacing distribution of probe traffic. Target input spacing for each tool is 80 ls. Note the
slightly different scale for each plot. (a) Phase plot produced from one PATHLOAD fleet (1200 probe packets of length 1309 bytes). (b) Phase plot produced
from 12 SPRUCE runs (1200 packets pairs, packets of length 1500 bytes).

send error (microseconds)

re
la

tiv
e

fr
eq

ue
nc

y

100 50 0 50 100

0.
00

0.
02

0.
04

0.
06

0.
08

receive error (microseconds)

re
la

tiv
e

fr
eq

ue
nc

y

20 10 0 10 20

0.
00

0.
05

0.
10

0.
15

0.
20

send error (microseconds)

re
la

tiv
e

fr
eq

ue
nc

y

20 10 0 10 20

0.
00

0.
05

0.
10

0.
15

0.
20

Fig. 4. Relative frequencies of errors between send or receive packet spacings and spacings measured at DAG monitor. (a) Distribution of errors at
FreeBSD 5.3 sender with ntel Pro/1000 Gigabit Ethernet adapter and DAG 3.5 between hops C and D. (b) Distribution of errors at FreeBSD 5.3 receiver
with Intel Pro/1000 Gigabit Ethernet adapter and DAG 3.5 between hops D and E. (c) Distribution of errors at Linux 2.4 sender with Intel Pro/1000
Gigabit Ethernet adapter and DAG 4 attached directly to network interface.

J. Sommers et al. / Microprocessors and Microsystems 31 (2007) 222–235 229

Aut
ho

r's

pe
rs

on
al

co

py

to expose end-host limitations of generating precise streams
and to identify the resulting bias, but by studying the egress
spacings, we were also able to gain an expectation of what
the receiving host should have measured and realized that
considering compression events is important. In summary,
phase plot analysis resulted in the following observations:

• The error introduced by end hosts has approximately
zero mean when multiple measurements are taken.

• The relationship between input and output probe rates
and available bandwidth described in Eq. (4) invites
refinements.

• Both compression and expansion are indicative of con-
gestion along a measured path.

These observations lead us to propose a calibrated algo-
rithm for measuring available bandwidth. We first test how
quickly the mean deviation of measurements converges, on
average, to zero. That is, how many packets should com-
prise a stream, at minimum, in order for the error to be less
than some threshold? To answer this question, we created a
tool to send packet streams of length 100 packets at four
target spacings of 60, 80, 100, and 120 ls, in separate
experiments. We ran the tool under topology 1 with no
cross traffic to collect approximately 1000 packet stream
measurements (i.e., about 100,000 packets per experi-
ment).7 For each packet stream, we counted the number
of packets required for the mean deviation between spac-
ings measured at the DAG monitor and timestamps gener-
ated by the application to be less than 1 ls. Fig. 5 plots the
cumulative distribution of stream lengths required for each
target spacing. The distributions show that the mean error
converges to zero quite quickly and that packet streams of
at least length 20 packets appear to be sufficient.8 However,

there remain tradeoffs for ABET methodologies using
packet streams. While shorter streams may reduce the
intrusiveness of the tool, and may reduce measurement
latency, the averaging time scale is also reduced, theoreti-
cally resulting in greater measurement variance (Eq. (1)).

At the base of our proposed algorithm is a version of
Eq. (4), modified to consider absolute difference in average
input and output spacings. The absolute difference is used
because both compression and expansion (or the combina-
tion of both in a given measurement period) must be con-
sidered as an indication of congestion. Average spacings
are used since we have shown that individual spacings are
subject to significant error. In the formulation below, we
consider the absolute difference between the average input
and output spacings as an indication of whether the input
rate was above the available bandwidth along the path
(analogous to Eq. (4)):

jgin � goutj ¼
6 f � gin rin 6 A

> f � gin rin > A:

�
ð7Þ

The value f is a threshold parameter used to determine how
far apart the average send and receive spacings can be
while still considering the input stream to be below the level
of spare capacity along the measurement path.

Like PATHLOAD, our algorithm for finding the available
bandwidth is iterative. First, we set the target send spacing,
gtarget, to be some minimum value (effectively setting the
maximum AB measurable), then proceed as follows.

(1) Send probe stream, measuring gin and gout at send
and receive hosts, respectively.

(2) If the absolute difference in average input and output
spacings is above the f threshold of the input spacing
Eq. (7), increase gtarget by jgin�gout j

2
, wait a configurable

amount of time, and go to previous step.
(3) Otherwise, update an exponentially weighted moving

average (EWMA) (with parameter a) with the esti-
mate rin. Report the updated EWMA as the estimate
of AB.

The reason for using an exponentially weighted moving
average on the individual estimates is that there will still be

Table 1
Summary of errors between packet spacings measured at application send
and receive, and DAG monitors

DAG 3.5/3.8 (OC-3/12) DAG 4 (Gigabit Ethernet)
FreeBSD 5.3 Linux 2.4

Send error Receive error Send error

Minimum �93.00 �20.00 �24.00
Median �2.00 0.00 �2.00
Mean �1.54 0.15 �0.61
Maximum 100.00 18.00 23.00

All values are in microseconds. Negative values indicate that a larger
spacing was measured at DAG monitor than in the application.

7 Phase plots from these experiments are similar to those shown in
Fig. 3.

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

required stream length to be within 1.0 microsec of target

cu
m

ul
at

iv
e

fr
ac

tio
n

60 microsec
80 microsec
100 microsec
120 microsec

Fig. 5. Cumulative distribution of stream lengths required to cause mean
sending error to be within 1 ls of target. Target spacings are 60, 80, 100,
and 120 ls.

8 Although we do not show detailed results here, we also ran
experiments with interrupt coalescence (IC) enabled on packet transmit,
with an absolute timer of 64 ls (the default value). The absolute timer sets
the maximum amount of time that a packet will be held awaiting another
packet to send before triggering an interrupt in the device driver.The
results for this configuration show that target spacings that are approx-
imately 20–40 ls above the IC absolute timer cannot be met, and no
packet stream of reasonable length can reduce the error to an acceptable
range. We therefore ran all experiments with IC disabled.

230 J. Sommers et al. / Microprocessors and Microsystems 31 (2007) 222–235

Aut
ho

r's

pe
rs

on
al

co

py

outliers in measurements. Even though Fig. 5 implies that a
stream length of 20 packets is generally sufficient, due to
the unpredictability of commodity systems, care is still
required.

We consider the above algorithm to be a ‘‘calibrated
Pathload’’ and have implemented it in a tool called YAZ.9

The source code for YAZ is available to the research com-
munity for evaluation at http://wail.cs.wisc.edu.

4.4. Experimental evaluation

We compared the accuracy of PATHLOAD, SPRUCE, and
YAZ using the different scenarios described in Section 4.1.
For the CBR and long-lived TCP source experiments, we
continuously collected AB estimates from each tool for
10 min, discarding the first 30 s and last 30 s. For the web
traffic setups, we continuously collected AB estimates from
each tool for 30 min, also discarding the first 30 s and last
30 s. For the comparisons below, we compute the actual
available bandwidth using the DAG monitor between hops
D and E for the exact interval over which a tool produces
an estimate.10 For each experiment, we consider the frac-
tion of estimates that fall within a range of 10% of the tight
link capacity. Since our tight link is OC-3 (149.76 Mb/s
before Cisco HDLC overhead), this window is �15 Mb/s.

For all experiments, YAZ was configured with a = 0.3 in
its exponentially weighted moving average and the thresh-
old parameter f was set to be equivalent to a rate of 1 Mb/s,
which we found to be a robust setting over our topologies
and traffic scenarios. a of 0.3 produced minimum
MSE over the collection of experiments. We set YAZ’s
stream length to 50 packets. For SPRUCE, we use
149.76 Mb/s as the tight link capacity in Eq. (3) for all
experiments except for the second web-like traffic scenario,
in which we set it to 97.5 Mb/s (the narrow link is Fast
Ethernet) and use the default value of 100 samples to com-
pute an estimate of AB. For PATHLOAD, we used default
parameters, and in the initial comparison with YAZ, we
set the stream length to 50 packets, while leaving the num-
ber of streams per fleet at the default value of 12. We report
the midpoint of PATHLOAD’s estimation range as the AB
estimate which, as we discuss below, is generally favorable
to PATHLOAD.

Results for all the experiments are shown in Fig. 6. The
results for constant bitrate traffic in topology 1 (Fig. 6a)
show that both YAZ and PATHLOAD perform with similar
accuracy, coming quite close to the true AB. However, few-
er than 60% of SPRUCE estimates are within the 10% accep-
tance range.

The two long-lived TCP traffic scenarios in topology
1, in some ways, create the most pathological cross traf-
fic conditions due to the frequent traffic oscillations on
the tight link. Fig. 6b plots results for the setup with
TCP flows in a single direction. The YAZ estimates are
fully within the 10% threshold, while more than 90%
of PATHLOAD’s estimates are within this bound. Only
about 20% of SPRUCE estimates fall within the acceptable
range. For the bi-directional long-lived TCP flows, YAZ

and PATHLOAD perform similarly, with approximately
90% of estimates falling within the 10% acceptance
range. Again, very few estimates produced by SPRUCE fall
within the 10% range.

For the web-like cross traffic in topology 1 experiment
(Fig. 6c), approximately 75% of estimates produced by
YAZ are within the acceptance range compared to about
50% of PATHLOAD estimates and about 40% of SPRUCE esti-
mates. We also ran PATHLOAD in this setup again, setting
the stream length to be 100 packets (the default in the
PATHLOAD source code). Fig. 6e shows the result of this
experiment, comparing the YAZ and SPRUCE results from
Fig. 6d. We see that the accuracy of PATHLOAD improves
by about 15%.

The results for the case of web-like cross traffic in topol-
ogy 2 are shown in Fig. 6f. In this setup, PATHLOAD under-
performs both YAZ and SPRUCE, with about 65% of YAZ

estimates and about 55% of SPRUCE estimates falling within
the 10% threshold, but only about 40% of PATHLOAD esti-
mates falling within this range. A closer look at the PATH-

LOAD results revealed that it took longer on average to
converge on an estimation range, and convergence times
were more variable than in any other setup. Since AB is
a moving target, these increased convergence times led to
poor estimates. Finally, Fig. 6g shows results for the
web-like cross traffic in topology 3. In this setup, about
80% of YAZ estimates are within the acceptance range,
compared with about 50% for PATHLOAD and 40% for
SPRUCE.

4.5. Detailed analysis of experimental results

4.5.1. Reported range of PATHLOAD

Although we do not report detailed results, we also
examined how often the actual AB fell in the range
reported by PATHLOAD. For the constant bitrate and
long-lived TCP experiments, the actual value is rarely
within PATHLOAD’s range. The reason is that its range
was often a single point, but not equal to the actual
AB. For the three self-similar web-like traffic scenarios,
the actual AB is, at best, within PATHLOAD’s range 58%
of the time (53/92 estimates, for topology 3). For these
experiments, the width of the range varies greatly, pre-
venting general explanation. In the end, our focus on
comparing the midpoint of PATHLOAD’s estimation
range with the actual AB is favorable to PATHLOAD.
We plan to more carefully evaluate AB variation as
future work.

9 Although the name YAZ is reminiscent of tool names starting with ‘‘yet
another . . .’’, our tool is actually named after the baseball great, Carl
Yastrzemski.
10 We include Cisco HDLC overheads (9 bytes per packet) in this

computation. Since we control packet payloads, we limit any hidden
effects due to SONET character stuffing.

J. Sommers et al. / Microprocessors and Microsystems 31 (2007) 222–235 231

Aut
ho

r's

pe
rs

on
al

co

py0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

relative error

cd
f

yaz
pathload
spruce

0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

relative error

cd
f

yaz
pathload
spruce

0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

relative error

cd
f

yaz
pathload
spruce

0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

relative error

cd
f

yaz
pathload
spruce

0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

relative error

cd
f

yaz
pathload
spruce

0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

relative error

cd
f

yaz
pathload
spruce

0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

relative error

cd
f

yaz
pathload
spruce

a b

dc

g

fe

Fig. 6. Comparison of available bandwidth estimation accuracy between YAZ, PATHLOAD, and SPRUCE for the constant bit rate and long-lived TCP traffic
scenarios. True available bandwidth is computed using DAG traces over the same interval on which a tool estimation is performed. Dashed vertical line at
x = 0.1 indicates 10% desired accuracy threshold. (a) Constant bit rate cross traffic of 50 Mb/s (Topology 1). (b) Long-lived TCP sources in one direction
(left to right in Fig. 2) (Topology 1). (c) Long-lived TCP sources in two directions (Topology 1). (d) Web-like cross traffic produced by Harpoon with
average rate of 50 Mb/s (Topology 1). (e) Comparison of YAZ, PATHLOAD and SPRUCE for web-like traffic when PATHLOAD is configured for streams of
length 100 packets (Topology 1). (YAZ and SPRUCE curves are same as in d). (f) Web-like traffic with narrow link (Fast Ethernet) and tight link (OC-3) as
distinct physical links (Topology 2). (g) Web-like traffic with additional points of cross traffic and a diversity of round trip times (Topology 3).

232 J. Sommers et al. / Microprocessors and Microsystems 31 (2007) 222–235

Aut
ho

r's

pe
rs

on
al

co

py

4.5.2. The effect of PATHLOAD’s stream length

To better understand the underlying reason for PATH-

LOAD’s improved AB estimates with a larger number of
probes, we examined a series of streams emitted by PATH-

LOAD in the web-like traffic scenarios. We calculated the
PCT and PDT metrics for each stream using the DAG
monitor between hops C and D – before any interaction
with cross traffic. Table 2 summarizes these results. The
mean PCT for stream lengths of 50 is close to the threshold
of 0.55 that considers the stream to reflect an increasing
trend in OWD. With the longer stream length of 100, the
mean PCT is further away from the threshold. This shift
suggests that the longer stream has an important side-effect
on the PCT metric, and that there is substantial bias intro-
duced at the sending host. From the results in Table 2,
stream length appears to have less of an impact on the ini-
tial bias of the PDT metric. For each stream length, at least
15% of the streams departed the sending host with at least
one of the metrics exceeding its threshold.

4.5.3. PATHLOAD stream compression

Table 3 quantifies the prevalence of compression in
PATHLOAD streams. We compared the spacing intended by
PATHLOAD for each stream with the spacings measured at
the DAG monitor between hops C and D. The values for
each traffic scenario in the table show the fraction of
streams for which there was an overall effect of compres-
sion. We see that, in general, about 20% of all streams
are compressed. In the case of long-lived TCP flows in
one direction, the queue at the tight link is usually increas-
ing as the flows increase their windows until loss occurs.
The fact that a non-negligible fraction of streams over each
scenario experience compression supports Eq. (7) as a key

distinguishing feature between YAZ and PATHLOAD. It also,
in part, explains why YAZ outperforms PATHLOAD.

4.5.4. Tool accuracy without cross traffic

For PATHLOAD, using the median OWD over a window
of samples appears to be a critical component of at least
the PCT formulation. A technique like SPRUCE, on the
other hand, is not insulated from individual spacing and
measurement errors; even a difference of a single microsec-
ond (assuming a target spacing of 80 ls) can lead to an esti-
mation error of nearly 2 Mb/s. For example, we ran
SPRUCE in the testbed while not introducing any cross traf-
fic. In this setup, the tool should invariably report close to
149.76 Mb/s. Over 10 consecutive runs, SPRUCE produced
estimates ranging from 134.4 to 153.8 Mb/s, with a mean
of 149.4 Mb/s and a standard deviation of 5.42. These inac-
curacies are entirely due to measurement error. While most
estimates are close to the true AB, the worst estimate is just
beyond the desired 10% accuracy range. (For similar zero
cross traffic experiments using PATHLOAD and YAZ, the esti-
mates were consistently within 1–2% of the true AB.)

4.5.5. The asymptotic nature of SPRUCE

Lastly, as we noted in Section 2, the SPRUCE formula is
an asymptotic result. During both long-lived TCP source
experiments, SPRUCE reported negative estimates. Even
with perfect measurement devices, it is not clear, a priori,
how long a tool like SPRUCE should collect samples. While
the default value of 100 may be sufficient for certain traffic
scenarios, it is clearly insufficient for others.

4.5.6. Estimation latency and overhead

Lastly, we compare estimation latency, the average
number of probes emitted per estimate, and the number
of estimates produced during the first web-like traffic sce-
nario. Table 4 summarizes these results, which are qualita-
tively similar for other traffic scenarios. We see that YAZ

produces estimates more quickly, thus producing many
more estimates over the duration of the experiment. PATH-

LOAD and YAZ operate in an iterative fashion, and we see
from the table that YAZ, on average, requires fewer cycles
to arrive at an estimate.

Table 2
Mean and standard deviation of PCT and PDT values for streams of
length 50 or 100 packets upon departure (prior to interaction with cross
traffic) for web-like traffic scenarios

Stream length PCT PDT

l r l r

50 0.4 0.14 0.04 0.28
100 0.26 0.14 �0.07 0.27

Table 3
Prevalence of compression in PATHLOAD streams for all six cross traffic
scenarios

Traffic scenario Fraction of compressed
streams

CBR traffic of 50 Mb/s (Topology 1) 0.212
Long-lived TCP, one direction (Topology 1) 0.077
Long-lived TCP, two directions

(Topology 1)
0.260

Web-like traffic (Topology 1) 0.233
Web-like traffic (Topology 2) 0.220
Web-like traffic (Topology 3) 0.219

Table 4
Comparison of number of estimates produced, latency, number of packets
emitted per iteration (PATHLOAD and YAZ), and average number of packets
emitted per estimate for each ABET for web-like traffic in topology 1

Estimates
produced

Latency
l(r) (s)

Iterations per
estimate l(r)

Mean packets
per estimate

PATHLOAD

(K = 100)
96 17.7 (3.8) 8.4 (4.8) 10,080

PATHLOAD

(K = 50)
97 17.6 (3.8) 8.8 (4.2) 5280

SPRUCE 156 10.9 (0.9) NA 200
YAZ 446 3.8 (1.5) 6.1 (8.8) 366

J. Sommers et al. / Microprocessors and Microsystems 31 (2007) 222–235 233

Aut
ho

r's

pe
rs

on
al

co

py

Considering tool parameters and the mean number of
iterations, we arrive at the mean number of packets
required for each estimate. For much higher accuracy,
YAZ uses packets roughly of the same order of magnitude
as SPRUCE, but at least an order of magnitude fewer packets
than PATHLOAD. If PATHLOAD and SPRUCE represent a trade-
off between measurement accuracy and overhead, our
results for YAZ suggest that this tradeoff is not fundamen-
tal. For a SPRUCE-like budget, YAZ is more accurate than
PATHLOAD, sometimes significantly so.

4.6. Limitations of YAZ

There are some limitations to YAZ that we have yet to
fully examine. First, we do not yet have a complete under-
standing of how to set the f threshold parameter and its
sensitivity to particular operating system and hardware
characteristics and cross traffic conditions. Second, since
we use the mean spacing measured at sender and receiver,
we cannot detect intra-stream indications of congestion
that may be ‘‘washed out’’ over the duration of the stream.
We can only detect either persistent expansion or compres-
sion of a probe stream. Given our current understanding of
the nature of the errors introduced by commodity end
hosts, we may not be able to do significantly better. Third,
the initial minimum value of gin is specified by the user.
Determining how best to automatically set this parameter
for a range of environments is an area for future work.
Finally, our calibration study has focused on average AB
over a time interval. PATHLOAD reports a variation range
for AB, and Jain and Dovrolis [17,31] have shown that
the variation of AB is an important measurement target.
Extending our calibration study to consider AB variation
is a subject for future work.

5. Summary and conclusions

The primary objective of this paper is to highlight cali-
bration as a key component in the design, development
and rigorous testing of available bandwidth measurement
tools. We advocate the use of controlled laboratory exper-
iments as a means for partially overcoming the limitations
that are inherent in standard ns-type simulations. While
in vitro-like testing is unlikely to fully replace experiments
in situ, it offers complete control, full instrumentation
and repeatability which are all critical to tool calibration.
We note that the laboratory setups used in our study can
be recreated by other researchers [15].

We propose a framework for the calibration of ABETs.
Our case study exposes potential biases and inaccuracies in
ABE due to the use of commodity systems for high fidelity
measurement and/or inaccurate assumptions about net-
work system behavior and traffic dynamics. As a result of
these observations, we developed a calibrated Pathload-like
tool called YAZ, which is consistently more accurate than
prior ABETs. For example, in a 30 min-long experiment
in a traffic scenario using Internet-like bursty cross traffic,

81% of YAZ AB estimates are within 10% of the true value,
while only 57% of PATHLOAD estimates and 41% of SPRUCE

estimates fall within the same window of accuracy. For this
significantly higher level of accuracy, YAZ uses packets
roughly of the same order of magnitude as SPRUCE, but
at least an order of magnitude fewer packets than PATH-

LOAD. If PATHLOAD and SPRUCE represent a tradeoff between
measurement accuracy and overhead, our results for YAZ

suggest that this tradeoff is not fundamental. We believe
that YAZ is representative of the type of active measure-
ment tool that can be expected as a result of insisting on
more stringent calibration.

We also advocate the use of phase plots to analyze and
visualize the fine-grained measurements resulting from our
ABET experiments. We show how phase plots were instru-
mental in exposing existing ABET bias and errors, and the
qualitative insight rendered by them was key to the result-
ing design of YAZ. We do not claim that such plots are a
panacea, exposing all sources of bias and error for all active
measurement tools. However, we believe that there is an
outstanding need for new flexible analysis and visualization
tools capable of more fully exposing the enormous quantity
of high fidelity measurement data that can be collected
in the calibration framework we advocate in this paper.
While the focus is on a calibration strategy tuned to the
problem of ABE in this paper, we intend to generalize
our approach to additional active measurement-based
tools that attempt to infer network internal characteristics.

References

[1] V. Paxson, Strategies for sound Internet measurement, in: Proceed-
ings of ACMSIGCOMM Internet Measurement Conference ’04,
2004.

[2] S. Floyd, V. Paxson, Difficulties in simulating the Internet, in: IEEE/
ACM Transactions on Networking, vol. 9, No. 4.

[3] S. Floyd, E. Kohler, Internet research needs better models, in:
Hotnets-I, Princeton, NJ, 2002.

[4] A. Akella, S. Seshan, A. Shaikh, An empirical evaluation of wide-area
internet bottlenecks, in: Proceedings of ACM SIGCOMM Internet
Measurement Conference ’03, 2003.

[5] R. Carter, M. Crovella, Measuring bottleneck link speed in packet-
switched networks, in: Proceedings of Performance ’96, Lausanne,
Switzerland, 1996.

[6] N. Hu, P. Steenkiste, Evaluation and characterization of available
bandwidth probing techniques, in: IEEE JSAC Special Issue in
Internet and WWW Measurement, Mapping, and Modeling 21 (6).

[7] M. Jain, C. Dovrolis, End-to-end available bandwidth: Measurement
methodology, dynamics, and relation with TCP throughput, in:
Proceedings of ACM SIGCOMM ’02, Pittsburgh, PA, 2002.

[8] K. Lakshiminarayanan, V. Padmanabhan, J. Padhye, Bandwidth
estimation in broadband access networks, in: Proceedings of ACM
SIGCOMM Internet Measurement Conference ’04, Taormina, Sicily,
Italy, 2004.

[9] B. Melander, M. Bjorkman, P. Gunningberg, A new end-to-end
probing and analysis method for estimating bandwidth bottlenecks,
in: Proceedings of Global Internet Symposium, 2000.

[10] V. Paxson, End-to-end Internet packet dynamics, in: Proceedings of
ACM SIGCOMM ’97, Cannes, France, 1997.

[11] V. Riberio, R. Riedi, R. Baraniuk, J. Navratil, L. Cottrell, pathChirp:
Efficient available width estimation for network paths, in: Proceed-
ings of Passive and Active measurement Workshop, 2003.

234 J. Sommers et al. / Microprocessors and Microsystems 31 (2007) 222–235

Aut
ho

r's

pe
rs

on
al

co

py

[12] A. Shriram, M. Murray, Y. Hyun, N. Brownlee, A. Broido, M.
Fomenkov, K.C. Claffy, Comparison of public end-to-end bandwidth
estimation tools on high-speed links, in: Proceedings of Passive and
Active Measurement Workshop ’05, 2005.

[13] J. Strauss, D. Katabi, F. Kaashoek, A measurement study of
available bandwidth estimation tools, in: Proceedings of ACM
SIGCOMM Internet Measurement Conference ’03, Miami, FL, 2003.

[14] J. Sommers, P. Barford, W. Willinger, SPLAT: A visualization tool
for mining Internet measurements, in: Proceedings of Passive and
Active Measurement Conference, ’06, 2006.

[15] The Wisconsin Advanced Internet Laboratory. Available from:
http://wail.cs.wisc.edu, 2006.

[16] X. Liu, K. Ravindran, B. Liu, D. Loguinov, Single-hop probing
asymptotics in available bandwidth estimation: sample-path analysis,
in: Proceedings of ACM SIGCOMM Internet Measurement Confer-
ence ’04, Taormina, Sicily, Italy, 2004.

[17] M. Jain, C. Dovrolis, Ten fallacies and pitfalls on end-to-end
available bandwidth estimation, in: Proceedings of ACM SIGCOMM
Internet Measurement Conference ’04, Taormina, Sicily, Italy, 2004.

[18] S. McCanne, S. Floyd, UCB/LBNL/VINT Network Simulator – ns
(version 2). Available from: http://www.isi.edu/nsnam/ns/.

[19] PLANETLAB – an open platform for developing, deploying, and
accessing planetary-scale services. Available from: http://www.planet-lab.
org, 2006.

[20] DETER: A laboratory for security research. Available from: http://
www.isi.edu/deter/, 2006.

[21] Emulab — network emulation testbed. Available from: http://
www.emulab.net, 2006.

[22] L. Le, J. Aikat, K. Jeffay, F. Smith, The effects of active queue
management on web performance, in: Proceedings of ACM SIG-
COMM ’03, Karlsruhe, Germany, 2003.

[23] Y.-C. Cheng, U. Hölzle, N. Cardwell, S. Savage, G. Voelker, Monkey
see, monkey do: A tool for TCP tracing and replaying, in:
Proceedings of the USENIX 2004 Conference, 2004.

[24] F. Hernandez-Campos, F. Smith, K. Jeffay, How real can synthetic
network traffic be?, in: Proceedings of ACM SIGCOMM ’04 (Poster
Session), 2004.

[25] J. Sommers, P. Barford, Self-configuring network traffic generation,
in: Proceedings of ACM SIGCOMM Internet Measurement Confer-
ence ’04, 2004.

[26] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, K. Gibbs, Iperf 1.7.0 –
the TCP/UDP bandwidth measurement tool. Available from: http://
dast.nlanr.net/Projects/Iperf, 2006.

[27] S. Agarwal, J. Sommers, P. Barford, Scalable network path emula-
tion, in: Proceedings of IEEE MASCOTS ’05, 2005.

[28] S. Donnelly, High precision timing in passive measurements of data
networks, Ph.D. thesis, University of Waikato, 2002.

[29] G. Jin, B. Tierney, System capability effects on algorithms for
network bandwidth measurement, in: Proceedings of ACM SIG-
COMM Internet Measurement Conference ’03, 2003.

[30] R. Prasad, M. Jain, C. Dovrolis, Effects of interrupt coalescence on
network measurements, in: Proceedings of Passive and Active
Measurement Workshop ’04, 2004.

[31] M. Jain, C. Dovrolis, End-to-end estimation of the available
bandwidth variation range, in: Proceedings of ACM SIGMETRICS
’05, Banff, Alta., Canada, 2005.

J. Sommers et al. / Microprocessors and Microsystems 31 (2007) 222–235 235

