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Abstract

Today all Internet routers are built with buffers that hold packets in times of congestion.
These buffers can typically store between 250ms to one second worth of data. According to a
widely used “rule-of-thumb”, a link needs a buffer of size B = RTT × C, where RTT is the
average round-trip time of a flow passing across the link, and C is the data rate of the link. For
example, a 10Gb/s router linecard needs approximately 250ms × 10Gb/s = 2.5Gbits of buffers;
and the amount of buffering grows linearly with the line-rate. Such large buffers are challenging
for router manufacturers, who must use large, slow, off-chip DRAMs. They also lead to high
latencies in case of congestion. Recent research suggest that the rule-of-thumb (B = RTT ×C)
is now outdated and incorrect for routers serving highly aggregated traffic. According to these
new results, a link with n flows requires no more than B = (RTT × C)/

√
n, for long-lived or

short-lived TCP flows. These lower buffer requirements have been verified in simulation and
laboratory experiments as well as on real networks with live traffic. The consequences on router
design are enormous: a 2.5Gb/s link carrying 10,000 flows could reduce its buffers by 99%
with negligible difference in throughput, and a 10Gb/s link carrying 50,000 flows requires only
10Mbits of buffering, which can easily be implemented using fast, on-chip SRAM.

1 Introduction and Motivation

1.1 Background

A substantial amount of the space, power and cost of a high-end router line card today is used
by the buffer memory that stores packets during times of congestion. If these buffers fill up, they
cause queueing delay and delay-variance; when they overflow they cause packet loss, and when they
underflow they can degrade throughput. Given the significance of their role, we might reasonably
expect the dynamics and sizing of router buffers to be well understood, based on a well-grounded
theory, and supported by extensive simulation and experimentation. This is not so.

Router buffers are sized today based on a rule-of-thumb commonly attributed to a 1994 paper
by Villamizar and Song [1] 1. Using experimental measurements of at most eight TCP flows on a 40
Mb/s link, they concluded that a router needs an amount of buffering equal to the average round-trip
time of a flow that passes through the router, multiplied by the capacity of the router’s network
interfaces. This is the well-known B = RTT × C rule. We will show later that the rule-of-thumb
does indeed make sense for one (or a small number of) long-lived TCP flows.

Network operators follow the rule-of-thumb and require that router manufacturers provide 250ms
(or more) of buffering [3]. The rule is found in architectural guidelines [4], too. Requiring such large
buffers complicates router design, and is an impediment to building routers with larger capacity. For
example, a 10Gb/s router linecard needs approximately 250ms × 10Gb/s= 2.5Gbits of buffers, and
the amount of buffering grows linearly with the line-rate.

1While commonly attributed to this paper, the rule-of-thumb is actually much older [2].



Figure 1: Single flow topology consisting of an access link of latency lAcc and link capacity CAcc and
a bottleneck link of capacity C and latency l.

As the assumptions that lead to the rule of thumb have changed, it seems justified to ask if
it still holds. While it is still true that most traffic uses TCP, the number of flows has increased
significantly. Today, backbone links commonly operate at 2.5Gb/s or 10Gb/s, and carry over 10,000
flows.

Recent results [5] indeed suggest that this rule-of-thumb is no longer correct. We believe that
significantly smaller buffers could be used in backbone routers (e.g., by removing 99% of the buffers)
without a loss in network utilization. We demonstrate this theoretically, in simulations and experi-
ments in Section 5.1 and 5.2 respectively. At the very least, we believe that the possibility of using
much smaller buffers warrants comprehensive testing on real backbone networks. This paper isn’t
the last word, and our goal is to persuade one or more network operators to try reduced router
buffers in their backbone network.

It is worth asking why we care to accurately size router buffers; with declining memory prices,
why not just overbuffer routers? Overbuffering is a bad idea for two reasons. First, it complicates
the design of high-speed routers, leading to higher power consumption, more board space, and lower
density. Second, overbuffering increases end-to-end delay in the presence of congestion. Large buffers
conflict with the low-latency needs of real time applications (e.g., video games, and device control).

1.2 Where does the rule-of-thumb come from?

The rule-of-thumb comes from a desire to keep a congested link as busy as possible, so as to maximize
the throughput of the network. We are used to thinking of sizing queues so as to prevent them from
overflowing and losing packets. But TCP’s “sawtooth” congestion control algorithm is designed to
fill any buffer, and deliberately causes occasional loss to provide feedback to the sender. No matter
how big we make the buffers at a bottleneck link, TCP will cause the buffer to overflow.

The rule-of-thumb comes from the dynamics of TCP’s congestion control algorithm. In particular,
a single TCP flow passing through a bottleneck link requires a buffer size equal to the bandwidth-
delay product in order to prevent the link from going idle and thereby losing throughput. Here, we
will give a quick intuitive explanation of where the rule-of-thumb comes from; in particular, why this
is just the right amount of buffering if the router carried just one long-lived TCP flow. In Section 2
we will give a more precise explanation, which will set the stage for a theory for buffer sizing with
one flow, or with multiple long- and short-lived flows. Later, we will confirm that our theory is true
using simulation and experiments in Sections 5.1 and 5.2, respectively.

Consider the simple topology in Figure 1 in which a single TCP source sends an infinite amount
of data with packets of constant size. The flow passes through a single router, and the sender’s
access link is much faster than the receiver’s bottleneck link of capacity C, causing packets to be
queued at the router. The propagation time between sender and receiver (and vice versa) is denoted
by Tp. Assume that the TCP flow has settled into the additive-increase and multiplicative-decrease
(AIMD) congestion avoidance mode.

The sender transmits a packet each time it receives an ACK, and gradually increases the number
of outstanding packets (the window size), which causes the buffer to gradually fill up. Eventually a
packet is dropped, and the sender doesn’t receive an ACK. It halves the window size and pauses.
The sender now has too many packets outstanding in the network: it sent an amount equal to the



old window, but now the window size has halved. It must therefore pause while it waits for ACKs
to arrive before it can resume transmitting. The key to sizing the buffer is to make sure that while
the sender pauses, the router buffer doesn’t go empty and force the bottleneck link to go idle. By
determining the rate at which the buffer drains, we can determine the size of the reservoir needed
to prevent it from going empty. It turns out that this is equal to the distance (in bytes) between
the peak and trough of the “sawtooth” representing the TCP window size. We will show later that
this corresponds to the rule-of-thumb: B = RTT × C.

It is worth asking if the TCP sawtooth is the only factor that determines the buffer size. For
example, shouldn’t statistical multiplexing, and the sudden arrival of short bursts have an effect?
In particular, we might expect the (very bursty) TCP slow-start phase to increase queue occupancy
and frequently fill the buffer. We will find in Section 4 that bursts from short flows do have an effect.
However it is very small, and that the buffer size is, in fact, dictated by the number of long flows.

1.3 How buffer size influences router design

Having seen where the rule-of-thumb comes from, let’s see why it matters; in particular, how it
complicates the design of routers. At the time of writing, a state of the art router linecard runs at
an aggregate rate of 40Gb/s (with one or more physical interfaces), has about 250ms of buffering,
and so has 10Gbits (1.25Gbytes) of buffer memory.

Buffers in backbone routers are built from commercial memory devices such as dynamic RAM
(DRAM) or static RAM (SRAM).2 The largest commercial SRAM chip today is 36Mbits, which
means a 40Gb/s linecard would require over 300 chips, making the board too large, too expensive
and too hot. If instead we try to build the linecard using DRAM, we would just need 10 devices.
This is because DRAM devices are available up to 1Gbit. But the problem is that DRAM has a
random access time of about 50ns, which is hard to use when a minimum length (40byte) packet
can arrive and depart every 8ns. Worse still, DRAM access times fall by only 7% per year, and so
the problem is going to get worse as line-rates increase in the future.

In practice router linecards use multiple DRAM chips in parallel to obtain the aggregate data-
rate (or memory-bandwidth) they need. Packets are either scattered across memories in an ad-hoc
statistical manner, or use an SRAM cache with a refresh algorithm [6]. Either way, such a large
packet buffer has a number of disadvantages: it uses a very wide DRAM bus (hundreds or thousands
of signals), with a huge number of fast data pins (network processors and packet processor ASICs
frequently have more than 2,000 pins making the chips large and expensive). Such wide buses
consume large amounts of board space, and the fast data pins on modern DRAMs consume a lot of
power.

In summary, it is extremely difficult to build large packet buffers at 40Gb/s and beyond. Given
how slowly memory speeds improve, this problem is going to get worse over time.

Substantial benefits could be gained by placing the buffer memory directly on the chip that
processes the packets (a network processor or an ASIC). In this case, very wide and fast access to
a single memory is possible. Commercial packet processor ASICs have been built with 256Mbits
of “embedded” DRAM. If memories of 2% the delay-bandwidth product were acceptable (i.e., 98%
smaller than they are today), then a single-chip packet processor would need no external memories.
We will present evidence later that buffers this small might make little or no difference to the
utilization of backbone links.

2 Buffer Size for a Single Long-lived TCP Flow

In the next two sections we will determine how large the router buffers need to be if all the TCP
flows are long-lived. We will start by examining a single long-lived flow, and then consider what

2DRAM includes devices with specialized I/O, such as DDR-SDRAM, RDRAM, RLDRAM and FCRAM.



Figure 2: Schematic evolution of a router buffer for a single TCP flow.
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Figure 3: A TCP flow through a single router with buffers equal to the delay-bandwidth product.
The upper graph shows the time evolution of the congestion window W (t). The lower graph shows
the time evolution of the queue length Q(t).

happens when many flows are multiplexed together.
Starting with a single flow, consider again the topology in Figure 1 with a single sender and one

bottleneck link. The schematic evolution of the router’s queue (when the source is in congestion
avoidance) is shown in Figure 2. From time t0, the sender steadily increases its window-size and
fills the buffer, until the buffer has to drop the first packet. Just under one round-trip time later,
the sender stops sending at time t1, because it detects that a packet has been dropped. It halves
its window size from Wmax to Wmax/2 packets3. Now, the window size limits the number of unac-
knowledged (i.e., outstanding) packets in the network. Before the loss, the sender is allowed to have
Wmax outstanding packets; but after the timeout, it is only allowed to have Wmax/2 outstanding
packets. Thus, the sender has too many outstanding packets, and it must pause while it waits for the
ACKs for Wmax/2 packets. Our goal is to make sure the router buffer never goes empty in order to
keep the router fully utilized. Therefore, the buffer must not go empty while the sender is pausing.

If the buffer never goes empty, the router must be sending packets onto the bottleneck link at
constant rate C. This in turn means that ACKs arrive to the sender at rate C. The sender therefore
pauses for exactly (Wmax/2)/C seconds for the Wmax/2 packets to be acknowledged. It then resumes
sending, and starts increasing its window size again.

The key to sizing the buffer is to make sure that the buffer is large enough, so that while the
sender pauses, the buffer doesn’t go empty. When the sender first pauses at t1, the buffer is full, and
so it drains over a period B/C until t2 (shown in Figure 2). The buffer will just avoid going empty if
the first packet from the sender shows up at the buffer just as it hits empty, i.e., (Wmax/2)/C ≤ B/C,
or

B ≥ Wmax/2.

To determine Wmax, we consider the situation after the sender has resumed transmission. The
window size is now Wmax/2, and the buffer is empty. The sender has to send packets at rate C or
the link will be underutilized. It is well known that the sending rate of TCP is R = W/RTT . Since

3While TCP measures window size in bytes, we will count window size in packets for simplicity of presentation.
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Figure 4: A TCP flow through an underbuffered router.
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Figure 5: A TCP flow through an overbuffered router.

the buffer is empty, we have no queueing delay. Therefore, to send at rate C we require that

C =
W

RTT
=

Wmax/2

2TP

or Wmax/2 = 2TP × C which for the buffer leads to the well-known rule-of-thumb

B ≥ 2Tp × C = RTT × C.

Figure 3 illustrates the evolution of a single TCP flow, using the topology shown in Figure 1.
The buffer size is exactly equal to the rule-of-thumb, B = RTT × C. The window size follows the
familiar sawtooth pattern, increasing steadily until a loss occurs and then halving the window size
before starting to increase steadily again. Notice that the buffer occupancy almost hits zero once
per packet loss, but never stays empty. This is the behavior we want for the bottleneck link to stay
busy.

Figures 4 and 5 show what happens if the link is underbuffered or overbuffered. In Figure 4, the
router is underbuffered, and the buffer size is less than RTT ×C. The congestion window follows the
same sawtooth pattern as in the sufficiently buffered case. However, when the window is halved and
the sender pauses waiting for ACKs, there is insufficient reserve in the buffer to keep the bottleneck
link busy. The buffer goes empty, the bottleneck link goes idle, and we lose throughput.

On the other hand, Figure 5 shows a flow which is overbuffered. It behaves like a correctly
buffered flow in that it fully utilizes the link. However, when the window is halved, the buffer does
not completely empty. The queueing delay of the flows is increased by a constant, because the buffer
always has packets queued.

In summary, if B ≥ 2Tp × C = RTT × C, the router buffer (just) never goes empty, and the
bottleneck link will never go idle.
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3 When many long TCP flows share a link

In a backbone router many flows share the bottleneck link simultaneously, and so the single long-lived
flow is not a realistic model. For example, a 2.5Gb/s (OC48c) link typically carries over 10,000 flows
at a time [7].4 So how should we change our model to reflect the buffers required for a bottleneck link
with many flows? We will consider two situations. First, we will consider the case when all the flows
are synchronized with each other, and their sawtooths march in lockstep perfectly in-phase. Then
we will consider flows that are not synchronized with each other, or are at least not so synchronized
as to be marching in lockstep. When they are sufficiently desynchronized — and we will argue that
this is the case in practice — the amount of buffering required drops sharply.

It is well-documented that if multiple TCP flows share a bottleneck link, they can become
synchronized with each other [8, 9]. They are coupled because they experience packet drops at
roughly the same time, and so their “sawtooths” become synchronized and in-phase. If a number
of flows share a bottleneck link, they each halve their window size at the same time; and so the
aggregate window process (the sum of all the window size processes), looks like an amplified version
of a single flow. As with a single flow, the buffer needs to be as large as the distance from the
peak to the trough of the aggregate window size process, which is still equal to the bandwidth-delay
product.

Flows are not synchronized in a backbone router carrying thousands of flows with varying RTTs.
Small variations in RTT or processing time are sufficient to prevent synchronization [10]; and the
absence of synchronization has been demonstrated in real networks [7, 11]. Likewise, we found in our
simulations and experiments that while in-phase synchronization is common for under 100 concurrent
flows, it is very rare above 500 concurrent flows 5. Although we don’t precisely understand when

4This shouldn’t be surprising: A typical user today is connected via a 56kb/s modem, and a fully utilized 2.5Gb/s
can simultaneously carry over 40,000 such flows. When it’s not fully utilized, the buffers are barely used, and the link
isn’t a bottleneck. So we should size the buffers for when there are a large number of flows.

5Some out-of-phase synchronization (where flows are synchronized but scale down their window at different times
during a cycle) was visible in some ns2 simulations with up to 1000 flows. However, the buffer requirements are very
similar for out-of-phase synchronization as they are for no synchronization at all.



and why synchronization of TCP flows takes place, we have observed that for aggregates of over 500
flows, the amount of in-phase synchronization decreases. Under such circumstances we can treat
flows as being not synchronized at all.

To understand the difference between adding synchronized and desynchronized window size pro-
cesses, recall that if we add together many synchronized sawtooths, we get a single large sawtooth,
and the buffer size requirement doesn’t change. If on the other hand the sawtooths are not syn-
chronized, the more flows we add, the less their sum will look like a sawtooth; they will smooth
each other out, and the distance from the peak to the trough of the aggregate window size will get
smaller. Hence, given that we need as much buffer as the distance from the peak to the trough of
the aggregate window size, we can expect the buffer size requirements to get smaller as we increase
the number of flows. This is indeed the case, and we will provide an intuitive argument. For a more
detailed mathematical treatment see [5].

Consider a set of TCP flows with random (and independent) start times and propagation delays.
We’ll assume that they are desynchronized enough that the window size processes are independent
of each other. We can model the total window size as a bounded random process made up of the
sum of these independent sawtooths. We know from the central limit theorem that the aggregate
window size process will converge to a Gaussian process. Figure 6 shows that indeed the aggregate
window size does converge to a Gaussian process. The graph shows the probability distribution of
the sum of the congestion windows of all flows W =

∑
Wi, with different propagation times and

start times as explained in Section 5.1.
How does the shape of the Gaussian, and thus our buffer, depend on the number of flows? If we

have more flows, we would expect more statistical multiplexing and thus a narrower Gaussian. In
fact, the central limit theorem tells us that if we increase the number of flows n, the width of the
Gaussian (or, more formally, its standard deviation) should decrease with 1√

n
. The role of the buffer

is to absorb the fluctuation in the total window size. If the standard deviation of the total window
size decreases with 1√

n
, we would expect the required amount of buffer to do the same.

We know that the correct amount of buffering for a single flow (n = 1) is 2Tp ×C as for a single
flow the old rule-of-thumb still holds. We would thus expect the required amount of buffering for
desynchronized flows to be:

Bmin =
2T p · C√

n
.

This result has important practical implications for building routers. A core router currently has
from 10,000 to over 100,000 flows passing through it at any given time. While the vast majority of
flows are short (e.g., flows with fewer than 100 packets), the flow length distribution is heavy tailed
and the majority of packets at any given time belong to long flows. As a result, such a router would
achieve close to full utilization with buffer sizes that are only 1√

10000
= 1% of the delay-bandwidth

product. We will verify this result experimentally in Section 5.2.

4 Sizing the Router Buffer for Short Flows

Not all TCP flows are long-lived; in fact many flows last only a few packets, never leave slow-start,
and so never reach their equilibrium sending rate [7]. Up until now we’ve only considered long-lived
TCP flows, and so now we’ll consider how short TCP flows affect the size of the router buffer. We’re
going to find that short flows (TCP and non-TCP) have a much smaller effect than long-lived TCP
flows, particularly in a backbone router with a large number of flows.

We will define a short-lived flow to be a TCP flow that never leaves slow-start (e.g., any flow
with fewer than 90 packets, assuming a typical maximum window size of 65kB).

Consider again the topology in Figure 1 with multiple senders on separate access links. As has
been widely reported from measurement, we can assume that new short flows arrive according to a



Poisson process [12, 13]. In slow-start, each flow first sends out two packets, then four, eight, sixteen,
etc. This is the slow-start algorithm in which the sender increases the window-size by one packet
for each received ACK. If the access links have lower bandwidth than the bottleneck link, the bursts
are spread out and a single burst causes no queueing. We assume the worst case where access links
have infinite speed, bursts arrive intact at the bottleneck router.

It has been shown [5] that in this case we can model the queue of the buffer using simple queueing
theoretical model. From this model we can calculate the probability distribution of the router’s queue
length. If we know the queue length distribution, we can derive for it an upper bound for the loss
rate for any given buffer. We know that if the length of the queue is shorter than the length of
the buffer, no packets are dropped. Thus the probability of the queue exceeding a certain length is
greater than the drop probability for a router that has a buffer of this length.

Using the model, we can approximate the queue length distribution using effective bandwidth
methodology [14]. The result is that the probability of the queue exceeding a certain length (and
thus the upper bound for the drop probability for a router having a length of this queue) is

PDrop(B = b) = P (Q ≥ b) = e
−b

2(1−ρ)
ρ

.
E[Xi]

E[X2
i
]

A complete derivation of this result can be found in [5].
Our goal is to drop very few packets (if a short flow drops a packet, the retransmission significantly

increases the flow’s duration). In other words, we want to choose a buffer size B such that P (Q ≥ B)
is small.

A key observation is that — for short flows — the size of the buffer does not depend on the
line-rate, the propagation delay of the flows, or the number of flows; it only depends on the load of
the link, and length of the bursts. In practice the length of the bursts is limited by the maximum
window size of TCP. Current operating systems have maximum window sizes of 12 (most flavors of
Windows) to 43 (default on most UNIX hosts). Window sizes above 43 require the use of scaling
options which are rarely used today. As a result, the amount of buffering needed to absorb bursts is
almost fixed and is typically in the order of hundreds of packets.

The methodology used to model TCP flows can also be used for UDP flows and other traffic that
does not react to congestion.

In practice, buffers can be made even smaller. For our model and simulation we assumed access
links that are faster than the bottleneck link. There is evidence [7, 15] that highly aggregated traffic
from slow access links in some cases can lead to bursts being smoothed out completely. In this case
individual packet arrivals are close to Poisson, resulting in even smaller buffers. The buffer size can
be easily computed with an M/D/1 model by setting Xi = 1.

In summary, short-lived flows require only small buffers. When there is a mix of short- and
long-lived flows, we will see from simulations and experiments in the next section, that the short-
lived flows contribute very little to the buffering requirements, and so the buffer size will usually be
determined by the number of long-lived flows6.

5 Simulation and Experimental Results

Up until now we’ve described only theoretical models of long- and short-lived flows. We now present
results to validate our models. We use three validation methods: simulation (using ns2), experiments
on physical routers in a lab setting and an experiment on a live production network.

6For a distribution of flows we define short flows and long flows as flows that are in slow-start and congestion
avoidance mode respectively. This means that flows may transition from short to long during their existence.
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Figure 7: Minimum required buffer to achieve 98, 99.5 and 99.9 percent utilization for an OC3 (155
Mb/s) line with about 80ms average RTT measured with ns2 for long-lived TCP flows.

5.1 NS2 Simulations

In our simulations we assume a network with only one congested link in the core. Network operators
usually run backbone links at loads of 10%-30% and as a result packet drops are rare in the Internet
backbone. If a single point of congestion is rare, then it is unlikely that a flow will encounter two or
more congestion points. We assume that the router maintains a single FIFO queue with drop-tail.
However we expect our results to be valid for other queueing disciplines (e.g., RED) as well. The
average propagation delay of a TCP flow varied from 25ms to 300ms.

5.1.1 Long-lived TCP Flows

Figure 7 simulates an OC3 (155Mb/s) line carrying long-lived TCP flows. The graph shows the
minimum required buffer for a given utilization of the line, and compares it with the buffer size

predicted by the model. For example, our model predicts that for 98% utilization a buffer of RTT×C√
n

should be sufficient. When the number of long-lived flows is small the flows are partially synchronized
and the result doesn’t hold. However, when the number of flows exceeds 250, the model holds well,
as shown in the graph. We found that in order to attain 99.9% utilization we needed buffers twice
as big, just as the model predicts.

In our simulations and experiments we also looked at the packet loss rate. Decreasing the latency
of a TCP flow will always increase the loss rate. The loss rate of a TCP flow is a function of the
flow’s window size and can be approximated to l = 0.76

W 2 (see [16]). If we reduce buffers, we decrease
the RTT of the flow, therefore decrease the average W and thus increase loss. A positive side-effect
is that with smaller buffers, TCP performance improves, as we will see below.

5.1.2 Short Flows

We will use a commonly used performance metric for short flows: the flow completion time, defined
as the time from when the first packet is sent until the last packet reaches the destination. In
particular, we will measure the average flow completion time (AFCT). Figure 8 shows the minimum
required buffer so that the AFCT is increased by no more than 12.5%. Experimental data is from
ns2 experiments for 40, 80 and 200 Mb/s and a load of 0.8. Our model, with P (Q > B) = 0.025,
is plotted in the graph. The bound predicted by the M/G/1 model closely matches the simulation
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results.
The key result here is that the amount of buffering needed does not depend on the number of

flows, the bandwidth or the round-trip time. It only depends on the load of the link and the length
of the bursts. For the same traffic mix of only short flows, a future generation 1 Tb/s core router
needs the same amount of buffering as a local 10 Mb/s router today.

5.1.3 Mixes of Short- and Long-Lived Flows

In mixes of short flows and long lived flows, the buffer requirements are driven by the number of
long flows. This is even the case if the vast majority of flows, and even up to half of the bandwidth,
is generated by short flows.

One might wonder if for mixes of flows, smaller buffers hurt the quality of service for short flows.
Figure 9 shows that the opposite is the case — small buffers allow short flows to complete more
quickly. In this ns2 simulation, the average flow completion time is much shorter with RTT ×C/

√
n

buffers than with RTT ×C sized buffers. This is because the queueing delay is lower. So by reducing



the buffer size, we can still achieve the 100% utilization and decrease the completion times for shorter
flows.

In real networks there are no classes of flow length but flow lengths follow a typically heavy-
tailed distribution. We ran similar experiments with Pareto distributed flow lengths with essentially
identical results.

5.2 Measurements on a Physical Router

While simulation captures most characteristics or router-TCP interaction, we verified our model by
running experiments on a real backbone router with traffic generated by real TCP sources.

The router was a Cisco GSR 12410 with a 4 x OC3 POS “Engine 0” line card that switches IP
packets using POS (PPP over Sonet) at 155Mb/s. The router has both input and output queues,
although no input queueing took place in our experiments, as the total throughput of the router
was far below the maximum capacity of the switching fabric. TCP traffic was generated using the
Harpoon traffic generator [17] on Linux and BSD machines, and aggregated using a second Cisco
GSR 12410 router with Gigabit Ethernet line cards.

TCP Router Buffer Link Utilization (%)
Flows RTT×BW√

n
Pkts RAM Model Sim. Exp.

100 0.5 x 64 1 Mbit 96.9% 94.7% 94.9%
100 1 x 129 2 Mbit 99.9% 99.3% 98.1%
100 2 x 258 4 Mbit 100% 99.9% 99.8%
100 3 x 387 8 Mbit 100% 99.8% 99.7%
200 0.5 x 46 1 Mbit 98.8% 97.0% 98.6%
200 1 x 91 2 Mbit 99.9% 99.2% 99.7%
200 2 x 182 4 Mbit 100% 99.8% 99.8%
200 3 x 273 4 Mbit 100% 100% 99.8%
300 0.5 x 37 512 kb 99.5% 98.6% 99.6%
300 1 x 74 1 Mbit 100% 99.3% 99.8%
300 2 x 148 2 Mbit 100% 99.9% 99.8%
300 3 x 222 4 Mbit 100% 100% 100%
400 0.5 x 32 512 kb 99.7% 99.2% 99.5%
400 1 x 64 1 Mbit 100% 99.8% 100%
400 2 x 128 2 Mbit 100% 100% 100%
400 3 x 192 4 Mbit 100% 100% 99.9%

Figure 10: Comparison of our model, ns2 simulation and experimental results for buffer requirements
of a Cisco GSR 12410 OC3 linecard.

Figure 10 shows the results of measurements from the GSR 12410 router. The router memory
was adjusted by limiting the length of the interface queue on the outgoing interface. The buffer size

is given as a multiple of RTT×C√
n

, the number of packets and the size of the RAM device that would

be needed. Model is the lower-bound on the utilization predicted by the model. Sim. and Exp. are
the utilization as measured by a simulation with ns2 and on the physical router respectively. For
100 and 200 flows there is, as we expect, some synchronization. Above that the model predicts the
utilization correctly within the measurement accuracy of about ±0.1%. ns2 sometimes predicts a
lower utilization than we found in practice. We attribute this to more synchronization between flows
in the simulations than in the real network.

The key result here is that model, simulation and experiment all agree that a router buffer should

have a size equal to approximately RTT×C√
n

, as opposed to RTT × C (which in this case would be

1291 packets).



Buffer RTT×BW√
n

Bandwidth
(measured)

Utilization
(measured)

Utilization
(model)

500 >> 2× 19.981 99.92 % 100%
85 1.5 × 19.709 98.55 % 99.9%
65 1.2 × 19.510 97.55 % 99.5%
46 0.8 × 19.481 97.41 % 95.9%

Figure 11: Results from the Experiment on a Production Network

5.3 Measurements on a Production Network

We verified the RTT×BW√
n

hypothesis on a production network at Stanford University. We throttled

a router that serves traffic from the commercial Internet to student dormitories to 20 Mb/s, and
measured performance with different buffer sizes. The buffer was serving a wide range of traffic
with different protocols and applications. We estimated the number of concurrent flows to be
approximately 400 and assumed a maximum RTT of 250ms. Table 11 shows the results. We
that buffers of the size that our model predicts achieve close to 100% utilization. Additionally our
model can qualitatively predict what the amount of buffering is where utilization drops from full to
substantially below 100%.

A second experiment with a 10 Gb/s link on the Internet2 backbone is currently ongoing. Pre-
liminary results indicate that running the router at 0.5% of its default buffer size (5ms compared
with the default of 1 second) causes no measurable degradation in quality of service.

6 Conclusion

Recent results on router buffer sizing suggest that the buffers in backbone routers are significantly
larger than they need to be — possibly by two orders of magnitude. If these results hold under a
variety of conditions, they have important consequences for the design and operation of backbone
routers. While is it difficult to persuade network operators to remove 99% of the buffer capacity
from routers in functioning, profitable networks, such experiments must be the next step. We see the
results presented in this paper as the first steps toward convincing operators to make such changes.

Even if the network operations community is persuaded to configure smaller buffers in their
production routers, manufacturers of routers must also be convinced to build routers with smaller
buffer capacities. In the short-term, this is difficult too. In a competitive marketplace, it is not
obvious that a router vendor would feel comfortable building a router with 1% of the buffers of its
competitors. For historical reasons, the network operator is likely to buy the router with larger
buffers, even if they are unnecessary.

Eventually, if routers continue to be built using the current rule-of-thumb, it will become very
difficult to build linecards from commercial memory chips. And so in the end, necessity may force
buffers to be smaller. At least, if our results are true, we know the routers will continue to work just
fine, and the network utilization is unlikely to be affected.
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