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ABSTRACT

Cellular and 802.11 WiFi are compelling options for mobile Inter-
net connectivity. The goal of our work is to understand the per-
formance afforded by each of these technologies in diverse en-
vironments and use conditions. In this paper, we compare and
contrast cellular and WiFi performance using crowd-sourced data
from Speedtest.net. Our study considers spatio-temporal per-
formance (upload/download throughput and latency) using over 3
million user-initiated tests from iOS and Android apps in 15 dif-
ferent metro areas collected over a 15 week period. Our basic per-
formance comparisons show that (i) WiFi provides better absolute
download/upload throughput, and a higher degree of consistency in
performance; (ii) WiFi networks generally deliver lower absolute
latency, but the consistency in latency is often better with cellular
access; (iii) throughput and latency vary widely depending on the
particular access type (e.g., HSPA, EVDO, LTE, WiFi, etc.) and
service provider. More broadly, our results show that performance
consistency for cellular and WiFi is much lower than has been re-
ported for wired broadband. Temporal analysis shows that average
performance for cell and WiFi varies with time of day, with the best
performance for large metro areas coming at non-peak hours. Spa-
tial analysis shows that performance is highly variable across metro
areas, but that there are subregions that offer consistently better per-
formance for cell or WiFi. Comparisons between metro areas show
that larger areas provide higher throughput and lower latency than
smaller metro areas, suggesting where ISPs have focused their de-
ployment efforts. Finally, our analysis reveals diverse performance
characteristics resulting from the rollout of new cell access tech-
nologies and service differences among local providers.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless communica-
tion; C.4 [Performance of Systems]: Performance attributes; C.4
[Performance of Systems]: Measurement Techniques

General Terms

Design, Experimentation, Measurement, Performance
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1. INTRODUCTION

Over the last five years there has been an explosion in the avail-
ability and use of mobile devices that are both cellular and 802.11
WiFi enabled. The combination of a short range, high-speed capa-
bility and a longer range, lower speed capability is compelling and
enables a wide range of new mobile applications. Driven by the
popularity of applications that run on hybrid cell phones such as
the iPhone and Android-based devices, there is a large and growing
demand for bandwidth by mobile users.

A vexing problem for WiFi enabled cell phone users, service
providers and application designers is seeking out and supporting
the connectivity option that provides the best and most reliable per-
formance. Over shorter time scales issues that affect performance
include local availability of services, load at a particular site, char-
acteristics of the handset, and interference. Over longer time scales,
performance is affected by issues such as the ongoing introduction
of new technology and deployment of new service provider infras-
tructure.

To assist users in the effort of understanding their connectivity
options, a number of commercial and open-source throughput test-
ing applications are available. When invoked, these applications at-
tempt to determine the maximum bandwidth for both uploads and
downloads from the target device. At basis, these applications send
streams of random bytes via HTTP (e.g., data blobs through GET
and POST methods) between the target device and a test server.
The receiving application measures the bits/second received over
small time periods (e.g., one second) and reports the highest sus-
tained rate that is achieved. Details of the specific mechanisms for
selecting sending rates, measurements and reporting vary between
applications. However, data gathered by these applications offer
the possibility to provide unique insights into mobile device per-
formance.

In this paper, we describe an investigation of mobile device per-
formance using crowd-sourced data provided by one of the most
popular and widely deployed mobile bandwidth testers, Speedtest .
net [7]. This unique and rich data set includes information about
the device operating system used for the test (i0S or Android), a
unique handset identifier, GPS coordinates of the mobile device,
time of test, upload and download speeds achieved, etc. Of equal
importance is the fact that Speedtest servers are deployed in over
600 locations world wide and are used by tens of thousands of users
on a daily basis.

The focus of our study is to understand the spatio-temporal char-
acteristics of performance of WiFi-enabled cell phones in a selec-
tion of metro areas with different population densities and diverse



geographic characteristics. We seek answers to basic questions
such as: what is the relative performance of cellular vs. WiFi in
a given geographic area? How does performance vary across local
access providers, and how does cell and WiFi performance vary in
sub-regions within the metro area? How does cellular and WiFi
performance vary temporally in the metro area and in sub-regions
within those areas? How consistent is performance for individual
users over time? What specific features in the data differentiate
observed performance? The long-term goal of our work is to for-
mulate conclusions about the spatio-temporal aspects of WiFi en-
abled cell phone performance that will lead to improvements in the
relevant protocols, configurations, and infrastructure.

Our evaluation indicates a rich yet complex set of characteristics
of spatio-temporal performance of mobile devices in a metro area.
As expected, we find absolute WiFi download and upload perfor-
mance to be superior to cellular performance in most areas, and
that WiFi exhibits a higher degree of performance consistency. We
also find that WiFi latency measurements are at least a factor of two
lower than cell latency in all areas, but that different providers can
exhibit vastly different latency characteristics, and consistency in
latency is often better with cellular access. Further, the absolute la-
tency difference between cell and WiFi tends to be smaller in larger
metro areas and the overall variability in latency is lower, suggest-
ing that greater efforts have been made to optimize those cellular
deployments. Although we find cell performance in large metro ar-
eas superior to performance in other areas, throughput and latency
performance measures vary widely depending on the specific ac-
cess type and service provider. Furthermore, we observe that while
new cellular access technologies such as 4G LTE offer throughput
speeds comparable to WiFi, the upload performance consistency is
currently low, suggesting that these deployments are not yet fully
optimized. More generally, our results show that performance con-
sistency for cellular and WiFi is significantly lower than has been
reported for wired broadband access. Our results also show that
based on trends toward higher throughput cellular access technolo-
gies, connectivity decisions based solely on throughput may not be
obvious in the future.

Recognizing the diversity of physical and IT infrastructures and
time variations in usage patterns within a given metro area, our
analysis includes evaluations of subareas over a variety of time win-
dows. Our results show that download/upload performance in sub-
areas follows a standard diurnal cycle but is highly variable. Specif-
ically, we find that while WiFi performance tends to be more uni-
form across subareas, cell performance in subareas shows higher
variability and there are fewer instances of subareas with consis-
tently good performance. We find that subareas with consistently
poor performance tend to be more localized in large metro areas for
both cell and WiFi. These results have implications for both users
and operators in terms of expectations for performance in both fixed
and vehicular settings, for diagnosis of performance degradation
and for future provisioning.

2. DATA

In this section we describe the unique data set that forms the basis
of our study. We discuss Speedtest’s deployment and performance
measurement system. We also describe the Speedtest data that are
the focus of our study and provide information about the metro
areas in which the data were collected. Finally, we discuss how
conclusions drawn from the data sets can be influenced by the areas
and methods used for collection.
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Figure 1: Packet exchange protocol initiated when the
Speedtest application is started on a client system.

2.1 Speedtest Overview

Speedtest.net [7] is a bandwidth/performance evaluation plat-
form that is managed and maintained by Ookla, Inc. [6]. The ap-
plication can be run via a flash-based web site, and native apps
are available for both Apple i0S-based devices (including iPod
touches, iPhones, and iPads) and Android-based devices (includ-
ing a variety of phones manufactured by HTC, Motorola, Samsung,
and Sony Ericsson, among many others). Over 3B performance
tests have been run since Speedtest began in 2006, with a signifi-
cant increase in use over the past twelve months. Daily tests exceed
125K per day, globally.

Each Speedtest is initiated by the client (either a browser or mo-
bile app) as shown in Figure 1. Upon invocation, a test request
is directed to the Speedtest server that is deemed to be geographi-
cally nearest to the client. There are servers deployed in over 600
locations world wide. Per the Speedtest wiki [5], latency, down-
load, and upload tests are conducted via HTTP (TCP port 80). La-
tency tests are based on request/response pairs with the average
of 10 RTT ping-style tests reported for the latency measurement.
Speedtest refers to the download and upload tests as “throughput
tests”, since their focus is on reporting download/upload speeds by
transferring small files between client and server.

A download test begins with an initial transfer of a fixed-size
file from server to client to establish an estimate for throughput.
This initial test results in selection of another file that will be used
for generating final test results. The size of the second file varies:
smaller files are used when the initial estimate suggests lower band-
width and larger files are used when the initial estimate suggests
more bandwidth. The target test file is then transferred repeatedly
(using naming tricks to prevent client caching) using up to 8 paral-
lel HTTP threads (a configurable option). Throughput estimates
based on these file transfers are provided at up to 30 times per
second. The top 10% and bottom 30% of the throughput samples
are discarded and the remaining samples are averaged to derive a
throughput sample. The reason for this kind of sampling is to try
to remove burst effects due to OS overhead and other effects and
arrive at a maximum throughput estimate that corresponds to the
expected case for the user. Test runs are tuned to be relatively short
(maximum of tens of seconds) to enhance user experience. Upload
tests are conducted in a similar fashion. We note that in prior work,
Bauer et al. [12] found that the Speedtest method results in a fairly
accurate characterization of last-mile performance.

In this work, we consider data collected from tests initiated from
the i0OS and Android apps. Each full test results in a rich log entry at



Table 1: Summaries of census and Speedtest data from the 15 target metro areas that are the subject of our evaluation. Speedtest
data are for the period from February 21, 2011 to June 5, 2011. US census data are from [14], European census data are from [28],
Asian census data are from [1,3,4], and non-US per capita income (PCI) data are from [11].

Location (market type) Pop. | Metro Rank | Annual PCI iOS Android
Unique # WiFi # cell Unique # WiFi # cell
handsets tests tests | handsets tests tests
New York, NY (large) 18.9M 1 $50.8K 89,356 | 246,222 78,729 97,994 | 100,794 | 353,784
Los Angeles, CA (large) 12.8M 2 $45.9K 150,804 | 425,197 | 105,901 174,221 181,928 | 606,564
Chicago, IL (large) 9.5M 3 $51.0K 27,018 62,997 12,084 41,482 34,437 | 104,667
Columbia, SC (medium) 768K 70 $41.7K 4,931 11,553 3,138 6,779 6,331 18,975
Syracuse, NY (medium) 663K 80 $39.8K 6,122 16,801 3,627 5,165 6,808 9,898
Madison, WI (medium) 569K 89 $49.2K 8,549 23,995 3,853 6,718 9,625 14,012
Jackson, TN (small) 115K 321 $36.6K 5,117 13,742 3,034 2,645 3,894 5,655
Lawrence, KS (small) 111K 329 $37.5K 3,231 8,164 1,893 3917 4,058 11,498
Missoula, MT (small) 109K 331 $34.4K 860 2,479 604 526 872 806
Manchester, UK (europe) 2.2M N/A $41.4K 80,211 | 291,564 30,810 32,221 82,700 37,7167
Brussels, BE (europe) 1.8M N/A $45.2K 22,624 48,085 11,033 4311 7,192 3,964
Belgrade, SP (europe) 1.6M N/A $6.0K 3,849 11,606 1,477 9,599 18,865 13,101
Palembang, ID (asia) 1.5M N/A $2.0K 415 743 621 504 756 749
Almaty, KZ (asia) 1.4M N/A $6.9K 1,949 4,821 1,674 903 1,097 1,947
Ulaanbaatar, MN (asia) 1.IM N/A $1.6K 673 1,861 275 340 621 289

the local Ookla server that includes the client IP, device type and OS
version, client geographic coordinates (longitude / latitude), server
name and coordinates, great-circle distance from the client to the
server (computed using the Haversine formula), timestamp, upload
and download speeds (in kb/s), latency (in milliseconds), access
type (cellular or WiFi), and the cellular carrier or WiFi network
provider. In the Android data set, for some tests we have finer
grained information about the specific cellular access type (e.g.,
EDGE, HSPA, EVDO-A, or LTE). For the iOS data, no such fine-
grained information exists; we only know whether the access is via
cell or WiFi. For each of the apps, we also have a unique device
fingerprint that allows us to identify measurements initiated by the
same handset (user) even if the test is initiated using a different
access technology or from a different service provider.

2.2 Data Sets Considered

The data we consider in our initial evaluation were collected
from servers located in 15 metro areas over a period of 15 weeks
from February 21, 2011 through June 5, 2011. In each case the
metro areas are locations with Speedtest servers. Selection of the
sites was based at a high level on attempting to amass a manageable
data corpus, yet one that provides a broad perspective on cellular
vs. WiFi performance in metro areas that are diverse in their ge-
ographic, socio-economic and behavioral characteristics. In par-
ticular, we focus on three different metro area types in the US,
small (Lawrence, KS; Jackson, TN and Missoula MT), medium
(Madison, WI; Syracuse, NY and Columbia SC) and large (New
York, NY; Los Angeles, CA and Chicago, IL). We also include
metro areas in Europe (Belgrade, Serbia; Brussels, Belgium and
Manchester, United Kingdom), and in Asia/Pacific (Ulaanbaatar,
Mongolia; Almaty, Kazakhstan and Palembang, Indonesia). The
specific choices were made primarily based on market size with an
attempt to select areas for each category that had roughly the same
population. While the specific geographic boundaries of the US
metro areas are defined by the US Census bureau, European and
Asian markets do not define metro areas in the same way. Thus,
for each server we only include tests that are conducted within a
100 km radius of a given server. Details of the individual metro
areas and their associated Speedtest data sets can be found in Ta-
ble 1. As shown in the table, the markets vary widely in terms of
socio-economic characteristics and Speedtest use.

On average, we observe tests initiated by 7,551 handsets per
day to the 15 servers for which we have data (3,863 by iOS users
and 3,688 by Android users). From these handsets, an average of
14,961 individual tests are initiated per day from cellular access,
and 15,521 per day using WiFi. Interestingly, for the Android app,
there are 11,273 tests per day on average via cellular technology,
and 4,380 via WiFi, while for the iOS app, there are only 2,464 tests
via cellular technology per day on average, compared with 11,141
via WiFi. Also, in 9,230 cases, we observe the same handset in at
least two different metro areas. Moreover, the distribution of the
number of tests initiated per handset is skewed. On average, there
are 6.0 tests per handset, with a (rather high) standard deviation of
17.4. Our data also include a great deal of diversity with respect
to handset type and operating system version. Table 2 shows the
unique number of devices and unique device/OS pairs (including
different OS versions) per site, as well as the top three devices (and
percentage share) for each site. Interestingly, while the number of
tests per site is generally dominated by Android devices, the iPhone
is the singularly most popular device, and other iOS-based devices
are also very popular.

Data for each test include highly accurate GPS-derived geographic
coordinates for the location of each test. The coordinates are only
taken once during a test so we cannot tell from a single test whether
or not a client was moving during a test. There are, however, in-
stances in our data sets where multiple tests are run consecutively in
relatively close geographic proximity and when plotted on a map,
we can see that the positions follow roads perfectly. Thus, we can
infer that a subset of our tests were run while users were traveling.

Figure 2 shows an example of the positions of all cellular clients
that access the Los Angeles, CA, Manchester, UK and Lawrence,
KS servers during the 15 week test period. Maps of WiFi client
locations from these metro regions, and maps of client locations
from other metro areas have similar profiles. In the large metro
areas, cellular and WiFi tests are conducted with more uniformity
over the highly populated metro area; in smaller metro areas, there
are tight clusters of test locations in densely populated subregions
with sparser use in less populated areas. In short, test locations cor-
relate highly with population density. (In the Los Angeles, CA and
Lawrence, KS plots shown in Figure 2, we show US zip code di-
visions, with more densely populated zip codes shaded darker than
more sparsely populated zip codes.) This variable profile suggests



Table 2: Handset diversity: numbers of unique devices and device/OS pairs for each of the 15 servers, as well as the top three devices
for each site (and percentage share of all devices for that site).

Three most popular devices
Location Unique devices | Unique device+OS 15 (%) 21 (Gp) 3 (%)
New York, NY 473 1223 | iPhone (26.0) iPad (8.8) HTC Supersonic (8.4)
Los Angeles, CA 558 1340 | iPhone (24.9) HTC Supersonic (10.7) iPad (8.4)
Chicago, IL 320 925 | iPhone (20.9) HTC Mecha (13.3) iPad (8.4)
Columbia, SC 125 265 | iPhone (20.9) HTC Mecha (14.7) HTC Supersonic (9.8)
Syracuse, NY 124 253 | iPhone (30.6) iPad (12.0) iPod touch (10.2)
Madison, WI 135 273 | iPhone (29.9) iPad (14.4) iPod touch (12.3)
Jackson, TN 79 154 | iPhone (46.1) iPad (8.5) | Motorola Droid 2 (6.9)
Lawrence, KS 124 246 | iPhone (26.4) HTC Supersonic (20.4) iPad (7.8)
Missoula, MT 51 99 | iPhone (31.1) iPad (17.7) iPod touch (15.1)
Manchester, UK 412 899 | iPhone (52.0) iPad (11.7) iPod touch (8.8)
Brussels, BE 178 354 | iPhone (43.6) iPad (11.4) iPod touch (8.9)
Belgrade, SP 309 613 | iPhone (18.2) HTC Bravo (8.9) HTC Buzz (8.2)
Palembang, ID 68 124 | iPhone (29.4) | Samsung GT-P1000 (8.6) iPad (8.2)
Almaty, KZ 124 239 | iPhone (49.7) iPad (11.2) HTC Supersonic (4.6)
Ulaanbaatar, MN 94 158 | iPhone (36.2) iPad (15.6) iPod touch (9.5)

1 centimeter = 4.82 kilometers

{ centimeter = 514 kilometers

Figure 2: Locations of Speedtests by cellular users in the Los Angeles, CA (left), Manchester, UK (center) and Lawrence, KS (right)
metro areas during the measurement period of February 21 to June 5, 2011. Area included in each plot is approximately S0km by

50km.

the need for a more detailed spatial analysis, which we describe in
Section 3. In all cases, there is a high degree of overlap between
cellular and WiFi test locations.

2.3 Discussion

We argue that the Speedtest data are compelling from the per-
spective of their richness, availability in a huge number of markets
and broad adoption by users. However, there are several limita-
tions that are important to acknowledge since they could influence
the conclusions drawn from our study.

Speedtest data are crowd-sourced and rely on users invoking and
running the throughput test application. While we have some abil-
ity to distinguish between handset types (for iOS devices, we do
not know the hardware generation, but for Android devices, we
have the specific model number), device configurations can vary,
especially with jail-broken devices. Thus, there could be variations
that could lead to biases in the test results. For example, we have
no way of knowing whether a given test is run indoors or outdoors.
Similarly, when and where the application is invoked depends en-
tirely on how individuals derive value from the tests. We expect
that the application will often be used when performance with the
local default technology is perceived to be poor. Hence, the results
of the performance tests might tend to be biased toward poor oper-
ating conditions for each technology. However, we have no way of

establishing baselines for performance or assessing testing bias in
each metro area that we consider other than appealing to statistical
characterizations and the relatively large numbers of tests included
in our data. Lastly, although we are able to identify individual users
in our data via unique device identifiers, our comparisons between
cellular and WiFi performance are at an aggregate level. In future
work, we intend to carefully examine cellular versus WiFi perfor-
mance on an individual user basis.

We are limited, to a certain extent, in our spatial analyses by the
fact that we do not have up-to-date ground truth locations of all cell
towers and WiFi access points that provided connectivity for hand-
sets for all tests. In densely populated areas there are likely to be
thousands of access points operated by many different providers.
These would provide natural anchor points for spatial clustering
of the performance data. The difficulty in assembling these data
sets for diverse markets is substantial. While regulatory agencies
such as the FCC keep databases of cell tower locations [16], they
are often incomplete, and similar databases in non-US markets are
sometimes difficult to obtain. However, we plan to consider cell
tower locations as identified in sources such as [2] in future evalua-
tions of our data. There are similar archives for WiFi access points
e.g., [8], but the completeness of these databases is unknown.

Economic considerations certainly come into play for all con-
stituencies (users, service providers and application designers) men-



tioned or discussed in this paper. For users, connectivity may be
subject to data transfer limits and traffic shaping. Although WiFi

user plans are rarely data-quantity limited, they are partitioned among

openly available for free, openly available for paying users, and pri-
vate connectivity.

Service providers make decisions on infrastructure density based
on many different issues including projected user growth, risks as-
sociated with losing customers due to under provisioning and ge-
ographic expansion of service. Finally, application designers must
carefully consider how to manage data transfers so that user experi-
ence under expected conditions is acceptable. Otherwise, they risk
losing customers. While these issues are fascinating and certainly
play a role in the use of mobile devices, drawing explicit lines be-
tween the Speedtest measurements and economic issues is a subject
of future study.

3. EVALUATION METHODOLOGY

Our evaluation takes a top-down approach to assessing the spatio-
temporal performance characteristics of cellular and WiFi through-
put and latency in the target metro areas. This section describes the
methods that we use to evaluate Speedtest data toward the goal of
being able to draw conclusions about the relative capabilities and
robustness of each technology.

3.1 Basic Performance Characteristics

We begin by calculating the basic statistical characteristics of
performance for each technology including maximum, average, min-
imum and standard deviation over the entire 15 week period in each
of the 15 metro areas. This analysis does not distinguish between
times of day or subregions within a given metro area. As such, itig-
nores the more complex and potentially interesting characteristics
of performance. However, it does enables us to begin to understand
the data from an aggregate perspective and establish simple rank-
ings between area types (i.e., large, medium, small, Europe, and
Asia) and rankings of metro areas within each area type.

From this coarse view of the data, we drill down by analyzing
per-handset performance measures. For the set of tests initiated
by each handset in a metro region, we separate the series of tests
by access technology (WiFi, cell, or some more detailed cell ac-
cess type) and by service provider. To obtain the service provider,
we use the IPv4 to autonomous system mapping data provided by
www.team-cymru.org. From this grouping, we can compute
summary statistics such as the median, mean, or 95th percentile
for throughput and latency for a given handset (user) when using a
given access provider and access technology in a given market. We
then plot scatterplots of upload vs. download throughput to com-
pare the throughput performance that different users obtain from
different networks and access technologies. We also compute per-
formance consistency measures using the same method of [33].
In particular, we plot CDFs of normalized per-handset through-
put and latency performance. The normalization is performed by
taking the average divided by the 95 percentile in the case of up-
load/download throughput, or taking the average divided by the 5
percentile in the case of latency.

3.2 Temporal Characteristics

The diurnal behavior of Internet traffic is one of its most well-
known empirical characteristics. Prior studies of WiFi networks
(e.g., [22]) and cellular traffic (e.g., [20]) have shown that diurnal
usage patterns are also evident. The goal of our temporal analysis is
to assess the extent to which client tests follow a diurnal pattern and
how the expected diurnal use of cellular and WiFi has an impact on
performance in our target metro areas. By drilling down on smaller

time windows, we also expect to be able to observe and characterize
anomalous events such as outages and periods of degraded service.

Our temporal analysis considers two characteristics: client use
versus time, and performance versus time. In the case of the for-
mer, we plot the aggregate hourly invocations of the test application
over the 15 week period. In the case of the latter, we plot the aver-
age hourly upload and download performance for cellular and WiFi
over the 15 week period. We also compute the per-handset average
normalized performance for each hour of the day, and the stan-
dard deviation of the normalized performance for each hour of the
day, as in [33]. These measures allow us to determine whether cer-
tain hours in the day give consistently better or worse performance
than others. Note that while we have a large number of total data
points across all servers, the data are still quite temporally sparse.
Thus, we do not examine time windows smaller than 1 hour. Nev-
ertheless, these plots provide insights on how performance for each
technology varies with time of day in each metro area.

3.3 Spatial Characteristics of Subregions

We believe that metro areas are a highly useful spatial aggregate
for our study since they provide a sufficient corpus of daily data
for temporal analysis and are commonly used in socio-economic
analyses. Analyses at the metro area scale can enable the impact of
large scale events such as storms or power outages to be evaluated.
However, metro areas typically comprise hundreds of square miles,
potentially thousands of cellular and WiFi access points and mil-
lions of users. As indicated above, this density can preclude iden-
tification of smaller scale unexpected or noteworthy events, which
is a goal of our work. To that end, we also analyze performance in
subregions for each metro area.

To analyze subregions, we generate a spatial interpolation of
performance using a technique called inverse distance weighting
(IDW) [32]. In IDW, the interpolated performance varies accord-
ing to the distance away from measurement points. The method
can produce a smooth contour of predicted performance based on
measurement data, and we color each contour band depending on
interpolated performance (e.g., blue for good performance, yellow
for intermediate performance, and red for poor performance).

With 15 weeks of data for each metro area, the question of the
temporal selection of data for subregions is also important. Se-
lections over longer time periods enable a first order perspective
similar to what we conduct for entire metro areas, while selections
over shorter time scales enable assessment of localized changes in
performance, which is a goal of our work. Similar to our basic and
temporal analyses, we consider subregion performance over the full
15 weeks as well as shorter intervals of days or hours.

Our spatial analysis is facilitated by the ArcGIS tool [19] —a
widely used Geographic Information System that is easily adapted
to processing the Speedtest data. With ArcGIS, we are able to per-
form IDW and kriging [29] analyses, among other types of spa-
tial analyses. We are also able to overlay our plots on base maps
that include roads and administrative or political boundaries, such
as county, state and country borders, and postcode or zipcode di-
visions. ArcGIS exposes a Python-based API, which we heavily
leveraged for our work. While this API does not expose all Ar-
cGIS functionality, it enables repetitive tasks to be automated. In
total, the scripts that were developed for Speedtest data analysis
comprised several hundred lines of code, which we intend to make
publicly available.

4. PERFORMANCE RESULTS

In this section we report the results of our spatio-temporal anal-
yses of cellular and WiFi performance in the 15 target metro areas.



Table 3: Download throughput for cell and WiFi from the 15 target metro areas for full 15 week period. All values are in kb/s.

Location Cell Mean (Stdev) | WiFi Mean (Stdev) | Cell 5% Cell Median | Cell 95"% | WiFi 5" % WiFi Median | WiFi 957 %
New York, NY 3194.4 (4234.7) 7621.7 (5574.8) 108.0 1678.0 12922.0 404.0 7040.0 17617.0
Los Angeles, CA 2261.6 (2914.4) 6528.3 (5051.1) 62.0 1262.0 7607.0 352.0 5556.0 15376.0
Chicago, IL 3770.8 (4787.8) 8288.7 (6021.6) 125.0 2250.0 14014.0 396.0 7770.0 18598.0
Columbia, SC 4297.9 (6582.3) 4975.9 (4019.3) 113.0 1276.0 20681.0 254.0 4286.0 12222.0
Syracuse, NY 1634.4 (1916.7) 7866.5 (5288.0) 130.0 1143.0 4315.0 381.0 7914.0 16705.0
Madison, WI 1258.3 (1513.2) 6103.0 (4507.9) 99.0 895.0 3485.0 347.0 5742.0 14173.0
Jackson, TN 907.9 (728.4) 4251.9 (3767.2) 69.0 792.0 2138.0 223.0 3171.0 10926.0
Lawrence, KS 1878.8 (1919.5) 5771.0 (4969.5) 95.0 1182.0 5931.0 274.0 4623.5 15685.0
Missoula, MT 1014.4 (1013.0) 4672.8 (4203.0) 107.0 747.0 2607.0 283.0 3579.0 12952.0
Manchester, UK 1358.9 (1314.6) 5811.8 (4825.6) 28.0 1077.0 3842.0 267.0 4717.0 15635.0
Brussels, BE 1243.4 (1727.3) 8609.7 (5700.5) 61.0 902.0 4370.0 546.0 8171.0 18160.0
Belgrade, SP 1416.5 (1469.4) 3370.3 (2820.0) 35.0 884.0 4596.0 296.0 2952.0 8861.0
Palembang, ID 574.9 (819.8) 682.7 (866.6) 21.0 256.0 2312.0 43.0 457.0 1928.0
Almaty, KZ 1310.5 (1465.8) 3001.4 (3461.0) 26.0 783.0 4636.0 136.0 1855.0 9116.0
Ulaanbaatar, MN 1066.5 (999.4) 2263.3 (3346.0) 34.0 960.0 2595.0 90.0 975.0 10789.0

Table 4: Upload throughput for cell and WiFi from the 15 target metro areas for full 15 week period. All values are in kb/s.

Location Cell Mean (Stdev) | WiFi Mean (Stdev) | Cell 5"% | Cell Median | Cell 95"% | WiFi57% | WiFi Median | WiFi 95" %
New York, NY 1804.6 (4577.9) 2873.2 (3314.6) 52.0 772.0 5428.0 177.0 2020.0 10094.0
Los Angeles, CA 1572.3 (4174.6) 2112.0 (3186.8) 62.0 715.0 4290.0 184.0 1022.0 9154.0
Chicago, IL 1587.0 (3412.5) 3025.4 (2325.9) 46.0 802.0 5289.0 265.0 3530.0 6539.0
Columbia, SC 1493.6 (2460.4) 1123.2 (2129.3) 47.0 708.0 5676.0 124.0 446.0 4422.0
Syracuse, NY 768.5 (1388.9) 2426.4 (3269.0) 74.0 683.0 1293.0 208.0 985.0 10919.0
Madison, WI 671.9 (1296.4) 1856.0 (2502.9) 55.0 478.0 1389.0 168.0 1064.0 5251.0
Jackson, TN 524.2 (745.7) 1771.1 (2579.0) 41.0 429.0 1258.0 101.0 930.0 6976.0
Lawrence, KS 634.6 (756.0) 2153.7 (2905.8) 45.0 554.0 1434.0 137.0 908.0 7773.0
Missoula, MT 719.2 (1834.6) 1188.4 (1907.9) 53.0 479.0 1890.0 124.0 731.0 4048.0
Manchester, UK 708.1 (755.3) 1384.6 (1950.7) 25.0 396.0 1659.0 180.0 745.0 5589.0
Brussels, BE 530.1 (657.7) 1699.3 (1622.1) 37.0 326.0 1773.0 233.0 1397.0 4185.0
Belgrade, SP 437.7 (709.8) 653.3 (1334.6) 32.0 351.0 1553.0 97.0 389.0 1618.0
Palembang, ID 156.8 (251.7) 514.2 (1269.1) 18.0 76.0 662.0 46.0 239.0 1596.0
Almaty, KZ 731.6 (830.0) 1455.5 (2736.0) 26.0 374.0 2497.0 58.0 829.0 6154.0
Ulaanbaatar, MN 277.6 (335.7) 2202.5 (3465.7) 29.0 154.0 926.0 55.0 846.5 10371.0

While we endeavor to be comprehensive in our reporting, the size
of our data set and scope of our analyses precludes inclusion of all
analyses due to space constraints. Thus, in a number of cases, we
show figures and report findings that are exemplars of a broader set
of results.

4.1 Basic Characteristics of Performance

4.1.1 Aggregate Performance

Our analysis begins by examining the general characteristics of
cellular and WiFi performance in each of the target metro areas.
These characteristics can be found in Tables 3, 4, and 5. The side-
by-side comparison shows that WiFi provides better maximum and
average performance for nearly all regions for upload and down-
load performance and latency. One regional exception is Columbia,
SC, which has a number of very high throughput cellular tests that
cause the average and 95 percentile to be higher than WiFi. These
tests are all from devices using the 4G LTE cell access technology,
which has substantially higher throughput than some older access
technologies. The tables also show that the difference in upload
performance between WiFi and cell is much smaller than the dif-
ference in download performance.

In Figure 3 we show scatterplots of upload versus download per-
formance for cell (left) and Wifi (right) for the Madison, WI metro
area. Each data point is computed as the 95 percentile value for
a given handset. These plots are representative of other metro ar-
eas. First, as with Tables 3 and 4, WiFi performance is generally
higher than cell. We note that the highest cellular throughputs are
for the LTE access technology. We also observe that for WiFi ac-

cess, there are more obvious “tiered” performance bands evident,
especially for AS7132 (AT&T) and AS20115 (Charter), than for
the cellular access networks. Note that Figure 3 is annotated to
point out some of these evident performance tiers in the upload di-
rection. For WiFi networks, these bands likely represent different
service plans available to customers. With cellular networks, there
are not typically service plan limits on throughputs, but rather on
total numbers of bytes transferred. Thus, the bands present in the
cellular plot (around 600 kb/s upload, and just over 1 Mb/s upload,
for UMTS and HSDPA) are more likely due to different modula-
tion rates in the cellular access. We observe in the plot that the
performance bands are most evident in the upload direction; es-
pecially for WiFi, there are no obvious download throughput tiers.
‘We hypothesize that this difference is due to the typically asymmet-
ric configuration of last-mile access technologies (e.g.,, Cable and
DSL), which makes it easier for the Speedtest application to satu-
rate the available upload capacity. Lastly, we hypothesize that as
higher speed cellular access technologies become more prevalent
(e.g., LTE), providers may need to impose service plan rate lim-
its similar to wired broadband access networks in order to better
manage access network congestion.

In order to evaluate whether there are any significant perfor-
mance differences between Android-based and iOS-based devices,
we plot in the left plot of Figure 4 the median download for iOS de-
vices versus the median download for Android devices computed
for each local access carrier in each of the five metro area types.
The right-hand plot shows median latency for iOS devices versus
median latency for Android devices, again computed for each local
access carrier. The plots are created from WiFi measurements only;



Table S: Latency for cell and WiFi from the 15 target metro areas for full 15 week period. All values are in milliseconds.

Location Cell Mean (Stdev) | WiFi Mean (Stdev) | Cell 5% Cell Median | Cell 95"% | WiFi 5" % WiFi Median | WiFi 957 %
New York, NY 282.0 (575.9) 111.9 (261.8) 68.0 159.0 786.0 21.0 54.0 336.0
Los Angeles, CA 268.0 (354.2) 120.5 (314.4) 67.0 165.0 776.0 24.0 64.0 350.0
Chicago, IL 178.5 (318.9) 96.1 (227.1) 63.0 122.0 429.0 22.0 53.0 255.0
Columbia, SC 252.2 (316.8) 187.7 (313.6) 102.0 183.0 736.0 55.0 120.0 456.0
Syracuse, NY 238.9 (199.0) 131.2 (225.3) 115.0 171.0 558.0 29.0 73.0 358.0
Madison, WI 262.3 (267.8) 119.9 (258.1) 99.0 184.0 773.0 24.0 69.0 343.0
Jackson, TN 339.1 (363.9) 168.2 (309.4) 116.0 226.0 858.0 23.0 107.0 412.0
Lawrence, KS 323.5 (351.6) 177.3 (286.0) 95.0 250.0 778.0 30.0 113.0 470.0
Missoula, MT 360.3 (247.2) 190.3 (241.1) 165.0 314.0 687.0 47.0 115.0 412.0
Manchester, UK 335.2(491.4) 129.7 (265.6) 98.0 221.0 912.0 34.0 92.0 313.0
Brussels, BE 281.6 (321.7) 103.8 (242.1) 84.0 203.0 755.0 28.0 67.0 238.0
Belgrade, SP 329.4 (475.7) 113.5(379.0) 79.0 226.0 842.0 22.0 52.0 318.0
Palembang, ID 583.8 (1334.4) 371.7 (1144.5) 148.0 348.0 1095.0 62.0 179.0 917.0
Almaty, KZ 356.7 (663.3) 141.3 (405.0) 90.0 194.0 1114.0 27.0 71.0 364.0
Ulaanbaatar, MN 649.4 (1935.9) 239.3 (824.6) 76.0 216.0 1990.0 17.0 67.0 862.0
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Figure 3: Scatterplots of upload versus download performance for cellular (left) and WiFi (right) for the Madison, Wisconsin metro
area. Data points represent 95 percentile for a given handset. Points are colored based on service provider. and marker shapes are

different for each access technology.

we do not show results for cellular tests due to the lack of detailed
access technology information for iOS devices (we only know it is
cellular, not what specific flavor). Interestingly, while throughput
does not appear to be affected by OS version (the upload plot re-
sults are similar to the download plot shown), i0OS appears to induce
consistently higher latency measurements than Android. Since the
same organization (Ookla) designed the app for each OS, we con-
clude that iOS either introduces significantly more buffering of net-
work data, or its APIs are not optimized to deliver low packet-level
latency.

Turning to a broader view of latency performance, we see in Ta-
ble 5 a vast difference between cell and WiFi performance. Cell
latencies are generally longer than WiFi, with mean cell latencies
approaching or exceeding a third of a second in many cases, and
very large 95 percentile latencies in all metro areas. Even the me-
dian cell latency is at least twice as large as WiFi latency for nearly
all regions we consider (Columbia, SC is the only exception). Re-
call that for each server, we only consider tests carried out within a
100 km radius.

To examine the latency issue further, we plot in Figure 5 empir-
ical cumulative distribution functions for WiFi connections and for
specific cellular access technologies, for providers from which we
see the most tests. The figure shows results for a large metro area

(Chicago, IL) and a much smaller metro area (Lawrence, KS). First,
we see that latencies for the larger Chicago market are generally
smaller than for the Lawrence market. Indeed, for other metro ar-
eas, the trend is clearly toward shorter latencies for large cities and
longer latencies for smaller cities. These results thus suggest that
service providers expend more effort to engineer their networks for
good performance in larger markets than smaller ones. We also see
that specific latency distributions are highly provider dependent:
for the Chicago plot, we see that the two curves showing WiFi
latency distributions are highly dissimilar: one provider delivers
quite low latencies, while another gives some of the worst latencies
observed overall. We also observe that the latency profiles for all
access types offered by a given provider often have similar charac-
teristics. This is especially true for the Lawrence, KS plot, but also
clearly evident in other metro areas (not shown). In other analyses
(also not shown), we did not find any meaningful correlation be-
tween latency and distance to the server. This lack of correlation is
likely due to packets traversing cellular backhaul networks that are
possibly geographically far away from the local Speedtest server,
an issue that has been identified in prior work [18,31].
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Figure 5: CDFs of latency for different access types; Chicago, IL (left) and Lawrence, KS (right).

4.1.2  Performance Consistency

We now examine consistency of performance results. We use
the method of Sundaresan et al. [33]: for each handset (user), we
construct cumulative distribution functions of normalized perfor-
mance, where the normalization is computed as the mean divided
by the 95" percentile. (For latency, instead of using the 95" per-
centile, we use the 5" percentile in the normalization computation.)
The motivation behind each of these normalizations is to identify
how far average measures deviate from good performance, where
good is defined as the 95" percentile throughput and 5 percentile
latency. We produce separate CDFs for each local access provider
and for each access type. If throughputs are consistent, points along
each CDF curve should be close to 1; any points less than 1 repre-

sent degraded performance. Likewise, if latency is consistent, we
also expect to see points along each CDF curve to be close to 1.
However, any deviations from good latency will result in normal-
ized values higher than 1 (i.e., inflated latencies). For each of the
plots below, we only consider users for which we had at least 5 tests
from which to compute a consistency measure; all other users’ data
are discarded. The authors of [33] found that download and upload
performance for wired broadband access networks exhibited high
consistency, except for a small number of service providers.

In Figure 6 we plot download (left), upload (center), and la-
tency (right) performance consistency for Los Angeles (top) and
Belgrade (bottom). Plots shown are representative of other metro
areas. We observe in these plots a low degree of performance con-
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Figure 6: Performance consistency for Los Angeles (left) and Belgrade (right) for download (top), upload (middle), and latency
(bottom). Plots shown are representative of other metro areas.



sistency, especially compared with the results of [33]. In their
work, nearly all curves were very close to 1, representing highly
consistent performance (the one exception was the Cable provider
Charter). Our results are exclusively generated from wireless tests,
and reveal that mobile users generally have to cope with much more
variable performance than users on wired networks. In Figure 6, we
also observe that WiFi upload/download performance is generally
more consistent than cell upload/download, though it depends on
the local access provider. Furthermore, in many cases, we see sim-
ilar performance consistency characteristics for the various access
technologies that a given service provider supports in a metro area
(c.f. Figure 5). We hypothesize from these similarities that some
providers use the same network “backhaul” infrastructure for both
cellular and WiFi access in an effort to optimize their network in-
frastructures to minimize costs. Therefore, our hypothesis assumes
that a shared bottleneck in the provider network is the cause of
the observed similarity in performance consistency between cellu-
lar and WiFi. We intend to examine this hypothesis in detail in
future work.

Interestingly, we observe that while LTE offers high absolute

throughput performance, its upload performance consistency is poor.

For example, in the Los Angeles upload consistency plot (top mid-
dle) in Figure 6, we see that LTE’s performance consistency is
lower than many other access types. Other metro areas show simi-
lar characteristics. We hypothesize that the cause for this behavior
is simply that service providers have not yet optimized LTE instal-
lations, and have rather focused on getting services initially rolled
out.

With respect to latency performance consistency, we see that
while WiFi offers generally higher absolute throughputs and more
consistent throughput, cellular latency is generally more consistent.
In the case of Los Angeles (top right plot), except for one service
provider that delivers poor performance consistency for most ac-
cess types it offers (AS21928), WiFi latencies exhibit a lower de-
gree of consistency than cellular access types. Similarly, for the
Belgrade plot (lower right), 2 of the 4 least consistent access tech-
nologies are WiFi. We hypothesize that this lower degree of per-
formance consistency is due to the effect of overbuffering at ac-
cess routers. Many access routers are well known to exhibit la-
tency pathologies due to overprovisioning of buffers [21,33], and
it is likely that user WiFi access is often through a home-grade
router connected to a wired broadband connection. Another pos-
sibility for the lower degree of performance consistency in WiFi
is higher contention for WiFi frequency bands, and differences be-
tween WiFi and cellular medium access control. However, since
we observe the same pattern of lower consistency in WiFi across
all metro areas—even the most sparsely populated ones where we
would not expect the effect of contention to be significant—we be-
lieve that overbuffering is the more likely cause.

Lastly, we note that in different metro areas, there are clear in-
stances of some service providers exhibiting generally poor perfor-
mance consistency for all offered services. For example, AS21928
in Los Angeles, and to a lesser extent, AS8400 in Belgrade. This
observation further supports the notion that performance for vari-
ous access technologies offered by a given service provider exhibit
similar qualities due to using the same backhaul infrastructure.

Main findings.

Absolute WiFi performance is better than cellular access, in gen-
eral. Throughput performance does not appear to be correlated with
operating system (i0S or Android), however latency measurements
are generally higher with iOS devices, suggesting too much buffer-
ing or APIs that are suboptimally designed. Performance consis-

tency of WiFi throughput is generally better than cellular, but cel-
lular latency performance tends to be more consistent than WiFi.
Lower consistency of WiFi latency is likely due to the impact of
overbuffering at broadband access routers. Local providers exhibit
similar performance consistency characteristics for all offered ac-
cess types, suggesting that providers use the same backhaul infras-
tructure to support various last-mile access methods. Performance
consistency for wireless access is markedly lower than has been re-
ported for wired broadband access, with a great deal of variation
depending on local service provider. The higher variability present
with wireless access performance is likely due to variability in sig-
nal quality, deployment density of base stations and cell towers, and
suboptimally designed service provider backhaul infrastructure, in-
cluding distant placement of cellular gateway nodes [31].

4.2 Temporal Characteristics of Performance

Our temporal analysis begins by analyzing the frequency of use
of the Speedtest application in the target regions. Figure 7 shows
the number of hourly invocations of the application for cellular and
WiFi over a two week period for six representative metro areas.
The figures clearly show the characteristic diurnal pattern for each
region and technology. We see that there are many hundreds of
invocations of the Speedtest app per day in larger metro areas, but
that the measurements are fairly sparse in smaller metro areas, with
typically fewer than 10 invocations of the Speedtest applications
per hour in Lawrence, KS. Lastly, we observe that in some markets
there are similar numbers of invocations of the app over WiFi and
cellular access (e.g., New York, NY and Los Angeles, CA), but
major differences in other markets (e.g., Manchester, UK).

Next, we analyze the temporal characteristics of upload and down-
load performance for cellular and WiFi. Figure 8 shows the hourly
average upload and download performance for each technology
over a 6 day period for one metro area from each of the five area
types (notice the different y-axis scales for cellular (top) and WiFi
(bottom)). We observe that for cellular access, the performance
for all but the largest metro area is fairly similar over time; perfor-
mance for the New York, NY region clearly stands above the oth-
ers. This trend is similar for other metro areas in the five area types.
The latency profiles in Table 5 and Figure 5 suggest that the better
engineered cellular infrastructure for some providers in large metro
areas has a clear impact on throughput performance. We observe
that for WiFi connections, while the smallest metro areas have gen-
erally lower throughputs, the differences are not as great among the
metro areas for WiFi as they are for cellular connections.

In other results (not shown due to space constraints), we observe
that performance in the largest metro areas is better during non-
peak hours (i.e., early morning hours) than for other times of day.
For other metro areas, there is no statistically significant difference
in measured performance between peak and non-peak hours. We
note that in Sundaresan et al. [33], the authors observed a distinct
performance difference in peak versus off-peak hours, due to net-
work load. We do not observe such a strong characteristic because
of the significantly lower degree of performance consistency we see
in our data.

Main findings.

We find higher throughput performance over time for larger metro
areas, further supporting the notion that service providers expend
more effort to engineer networks in more populous locations. We
find some evidence for higher performance during off-peak hours
and lower performance during peak hours, though to a lesser degree
than has been reported for wired broadband access. The cause for
this difference is likely due to the higher overall variability present
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Figure 8: Average hourly performance for cellular downloads (top left), cellular uploads (top right), WiFi downloads (bottom left)
and WiFi uploads (bottom right) for exemplars in each of the metro areas during April 24 to April 30, 2011.

in wireless access performance resulting from frequency band con-
tention and overbuffering at edge routers.

4.3 Spatial Analysis of Subregion of Perfor-
mance

Our spatial analysis of subregions within metro areas begins by
considering spatial performance variations using the entire 15 week
data set. To generate our plots below, we apply an inverse distance
weighting interpolation [32] to the performance measurements over
aregion. Pixels are colored according to interpolated performance.
In the plots below, we apply the following color symbology to up-
load/download performance: <= 128 kb/s: red; between 128 kb/s
and 256 kb/s: orange; between 256 kb/s and 512 kb/s: yellow; be-
tween 512 kb/s and 768 kb/s: green; between 768 kb/s and 1 Mb/s:
cyan; between 1 Mb/s and 2 Mb/s: blue; > 2 Mb/s: indigo. We
apply this same symbology for both upload and download perfor-
mance in order to make the plots visually comparable.

Figure 9 shows plots of interpolated upload performance for WiFi
(top) and cell (bottom) for three different metro regions (Chicago,
IL, Manchester, UK, and Lawrence, KS, left to right, respectively)
over the 15 week data set. The plots show that upload performance
is spatially variable. Since the plot is produced from the entire 15
week data collection period, regions in which the color is yellow
or red suggest that there are subareas with consistently poor perfor-
mance.

We also observe that although WiFi upload performance is broadly,

on average, at least twice as fast as cellular performance (c.f. Ta-
ble 4), the spatial performance characteristics reveal a much more
complex picture. For the Chicago, IL metro area, we observe that
WiFi upload performance is better across the entire region. How-
ever, when examining the Manchester, UK plots, we observe a clear
separation in WiFi upload performance between areas closer to

the city center and surrounding, more rural, areas. Although that
pattern is somewhat less clear with cellular upload performance
in Manchester, the areas of highest performance still generally lie
closer to the Manchester city center, with larger and more preva-
lent areas of poor performance in surrounding, less urban, areas.
A similar observation holds for the Lawrence, KS metro area and
other areas (not shown). (Note that since the Chicago, IL metro
area is extremely large, this pattern is not observable in the plots
shown. Expanding the plotted region reveals poorer performance
further away from the city center.)

We note that plots of download performance reveal similar vari-
ability in performance: there are subareas with consistently poor
performance, and subareas that exhibit good performance. In future
work, we intend to further examine spatial performance character-
istics, and utilize available cell tower and WiFi maps, along with
economic and population data, to drill down on the likely causes
for the observed performance characteristics.

Main findings.

We see a high degree of spatial performance variability, with
some metro areas exhibiting performance degradation as one moves
further away from the metro area center. Observed performance
differences are likely due to cellular tower and WiFi base station
placement, and density of placements, as well as local contention
due to load.
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Figure 9: Inverse distance weighting interpolation plots for WiFi upload performance (top) and cellular (bottom) for Chicago, IL
(left), Manchester, UK (center) and Lawrence, KS (right), for the entire 15 week data set.

S. RELATED WORK

There is a large and growing body of work that examines the be-
havior and characteristics of WiFi networks. Studies that are most
closely related to ours have been focused on analyzing mobile use
characteristics in live deployments. Birk et al. analyze the behavior
and characteristics of a city-wide commercial WiFi mesh network
in [13]. Their study is based on a diverse set of measurements of
a 250 node mesh operated by a single provider. Their assessment
of client performance was based on a set of targeted active mea-
surements, and showed temporal variations with peak performance
achieved during the day (since customers are primarily residential)
in contrast to wireline networks. In a related study, Sen et al. pro-
pose a framework for client-assisted active measurement of wide-
area wireless networks [30]. Similar empirical studies of WiFi be-
havior in localized settings include [9, 15,22,27]. More recently,
LaCurts and Balakrishnan report results of an empirical study of
110 different WiFi mesh networks in diverse markets around the
world [25]. While their study reveals a range of characteristics of
these networks, it does not address client performance, which is our
focus. While all of the aforementioned studies expand the body of
knowledge on WiFi behavior, our work differs in objective, scope,
measurement details and the fact that we include analysis of cellu-
lar performance.

There is also a growing literature on empirical studies of cellu-
lar networks. Tan et al. describe one of the first empirical studies
of 3G cellular networks in [34]. Their work is focused in a single
large metro area and includes an examination of client through-
put and other performance characteristics using measurements of
data transfers between a small set of smartphones and their servers.

Their results show a wide range of variable behaviors (diurnal pat-
terns, expanded RTT’s during peak hours, etc.) that are consis-
tent with a number of our observations. Other empirical studies
of behavior in cellular networks include [24, 26, 31]. More re-
cently, there have been several studies focused on smartphone per-
formance. Falaki ef al. use measurements from instrumented hand-
sets to study diversity in smartphone traffic characteristics [20],
while Huang er al. use a purpose-built application deployed on
a large number of handsets to study smartphone application perfor-
mance [23]. Shafiq ef al. [31] and Elmokashfi et al. [18] recently
examined cellular network performance characteristics. One par-
ticularly interesting finding from these studies is the impact that
the topology of the cellular backhaul network plays in performance.
Our work differs from these in its scope and focus on comparative
analysis of cellular and WiFi.

There are several prior studies that investigate cellular and WiFi
performance simultaneously. The notion of the combined use of
cellular and WiFi in a vehicular setting is addressed in [10]. That
study considers cellular and WiFi availability in three cities as the
basis for their work. In [17], Deshpande er al. evaluate cellular
and WiFi performance in the New York metro area, also in a ve-
hicular setting. Measurements are taken with a laptop that is driven
throughout the target area, which enables highly targeted spatio-
temporal tests. Their results highlight the widely available, lower
performance characteristics of cellular versus the lower availabil-
ity, higher performance characteristics of WiFi. While there are
similarities between these studies and our own, our results comple-
ment and expand the prior work by reporting client performance in
diverse markets using a larger body of crowd-sourced data.
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Figure 7: Cellular and WiFi tests conducted per hour in New
York, NY (top) and Manchester, UK (bottom) metro areas for
the two week period from 24 April, 2011 to 8 May, 2011.

6. SUMMARY AND CONCLUSIONS

Cellular and 802.11 WiFi are the de facto connectivity options
for today’s mobile users. The increasing availability of handsets
and tablets that offer both connectivity options coupled with the
the explosion of applications that demand high performance means
that users are sensitive to throughput performance for each technol-
ogy. In this paper, we present a measurement study of cellular and
WiFi performance using crowd-sourced data from the widely used
throughput testing application, Speedtest.net.

Our results reveal a wide range of characteristics of cellular and
WiFi performance. The raw comparison between the two tech-
nologies shows that WiFi provides superior download performance,
with maximum WiFi performance varying widely. The difference
in upload performance is much smaller, yet is also highly variable.
We also find that WiFi latency measurements are at least a factor
of two lower than cell latency in all areas, but the consistency in
latency is often better with cellular access. Overall, we find perfor-
mance consistency for wireless access networks to be much lower
than has been previously reported for wired networks. Temporal
analysis reveals that performance is sensitive to time of day in the
largest metro areas, with performance decreasing for both cellu-
lar and WiFi during the hours of peak use. Comparisons between
metro areas shows that larger markets provide a consistently higher
level of performance for both technologies, suggesting greater en-
gineering effort and resources deployed in more populous regions.
However, analysis within more localized regions shows high vari-
ability in performance for both technologies in all markets.

While the emphasis of our study is on a broad comparison of

cellular and WiFi in metro areas, our current results suggest several
conclusions about mobile performance. First, while WiFI offers
superior download performance, the relatively predictable level of
cellular performance for some network providers, coupled with its
ubiquity make it a compelling option for all but the most bandwidth
hungry apps. With the rollout of improve throughput access tech-
nologies like LTE, it may become the preferred option for wireless
connectivity. Second, the stability and performance of both tech-
nologies in larger markets suggests that performance would be en-
hanced by further build out of both WiFi and cellular infrastructure
in smaller markets.

In future work we plan to continue our investigation of Speedtest
data. Specifically, we plan to expand the scope of study by con-
sidering additional markets. We also intend to drill down on the
data in greater detail in order to better understand variations in
performance, e.g., by considering related datasets such as weather
conditions during test periods and cell tower/WiFi access point
locations. We also plan to investigate hypotheses posed in this
paper concerning provider backhaul infrastructure and its impact
on access performance, overbuffering in access routers, and wire-
less access contention. We are considering how to augment the
Speedtest measurement protocol in order to better understand these
and other performance observations. Finally, we plan to conduct
targeted, hypothesis-driven experiments in different markets using
the Speedtest application, again toward the goal of understanding
the root causes of observed performance results.
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