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ABSTRACT
Empirical research in the Internet is fraughtwith challenges. Among
these is the possibility that local environmental conditions (e.g.,
CPU load or network load) introduce unexpected bias or artifacts
in measurements that lead to erroneous conclusions. In this paper,
we describe a framework for local environment monitoring that is
designed to be used during Internet measurement experiments. The
goals of our work are to provide a critical, expanded perspective
on measurement results and to improve the opportunity for repro-
ducibility of results. We instantiate our framework in a tool we
call SoMeta, which monitors the local environment during active
probe-based measurement experiments. We evaluate the runtime
costs of SoMeta and conduct a series of experiments in which we
intentionally perturb different aspects of the local environment
during active probe-based measurements. Our experiments show
how simple local monitoring can readily expose conditions that
bias active probe-based measurement results. We conclude with
a discussion of how our framework can be expanded to provide
metadata for a broad range of Internet measurement experiments.
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1 INTRODUCTION
Active probe-based measurements have been widely used to eluci-
date Internet characteristics and behavior. Typical objectives for ac-
tive probe-based measurement include end-to-end path properties
(e.g., reachability, latency, loss, throughput), hop-by-hop routing
configurations and end-host performance. In each case, a sequence
of packets is sent from one or more measurement hosts to remote
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targets and responses are measured either at the sending host or at a
target host. One of the benefits of active probe-based measurement
is that it enables broad and diverse assessment of Internet charac-
teristics without the need for permission or authorized access.

Despite the benefits and the availability of data sets through on-
going collection efforts (e.g., [10, 14, 27]), conducting active probe-
based measurement studies is fraught with challenges. Among
these is the possibility that the local environment can introduce
unexpected bias or artifacts in measurements. We define the local
environment as the host emitting probe packets plus other systems
in the local area that can materially alter the behavior of probe
packets but are intended to be outside of the scope of the mea-
surement objectives. In particular, the host emitting probe packets
is assumed to do so in a manner consistent with a measurement
protocol. However, prior work has shown that variable CPU load
can alter probe sequences [15, 30]. Similarly, hosts that share local
connectivity can disrupt probe packet streams by sending bursts
of traffic. So, how can we know if measurement fidelity has been
affected by the local environment? The answer we advocate is to
collect metadata about the local environment when measurements
are being conducted.

In this paper, we describe a framework for collection of metadata
about the measurement environment. Inspired by calls from the
community to collect metadata during experiments, our high-level
goals are to make the process easy and thereby improve the quality
and reproducibility of active probe-based measurement studies.
To that end, our design goals are to create a capability that will
(i) measure the local environment when an active probe tool is
being used, (ii) not perturb probe traffic, and (iii) work seamlessly
with different systems and measurement platforms. To the best
of our knowledge, this is the first attempt to address these meta-
measurement issues.

We develop a tool for metadata collection called SoMeta, which
addresses our core design goals. SoMeta is activated on initiation of
a probe-based measurement campaign. It collects key performance
metrics on the measurement host (e.g., CPU and memory utiliza-
tion) and performs simple probe-based measurements to hosts in
the local environment. SoMeta has been implemented in Python,
whichmakes it simple to run on diverse hosts. It has also been imple-
mented to be lightweight in terms of its demands on a measurement
host. SoMeta produces simple log files that can be analyzed for in-
dications of high load or other events that provide perspective on
unexpected observations in target measurement data.

We demonstrate the capabilities of SoMeta by deploying it on
two versions of the Raspberry Pi, which is used in the Ark [10]
active probe-based measurement project, and on large server-class
systems. We begin by examining the load imposed by SoMeta on
the host systems. We find that SoMeta imposes about 12% CPU
load on a Pi model 1, 3% on a Pi model 3, and only about 1% on the
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servers in what we expect will be a typical configuration. Next, we
conduct a series of experiments in which we introduce artificial
load in the local environment while conducting active probe-based
measurements to a remote target using scamper [20]. The results
from these experiments show how SoMeta measurements highlight
the disturbances caused by the artificial load and how this could be
used to point out artifacts in the scamper measurements.

While we believe that SoMeta is an important step toward ac-
countability and reproducibility in active probe-based measurement
studies, it has certain limitations that we are addressing as part
of our ongoing work, including further reducing its performance
overhead, considering usage scenarios in shared measurement en-
vironments, and broadening the types of metadata that can be
captured, e.g., through in-network monitors. Moreover, there are
two additional ways in which the concept should be expanded.
First, the community needs to continue conversations about the
importance of metadata collection and the kinds of metadata that
should be collected to improve experiment reproducibility. Second,
deploying SoMeta (or something similar) in an existing infrastruc-
ture would enable better understanding of its performance and
how measurement artifacts and bias may be identified and possibly
corrected. To that end, all code and documentation for SoMeta is
readily available1.

2 RELATEDWORK
Over the years, there have been a number of calls from within
the Internet measurement community to promote sound [25], hy-
genic [19], and ethical [24] processes when carrying out Inter-
net measurement studies to improve confidence in the results de-
rived from measurement data, to facilitate data sharing, replication,
and reappraisal, and to carefully consider any harm that may be
caused [1, 2, 19, 24, 25]. Our study finds inspiration in these prior
works, in particular with regard to collecting metadata to assist
a researcher with assessing the quality of the collected measure-
ments, and for scientific replication [19, 25]. Particularly related to
our work is Paxson’s suggestion to measure facets of the same phe-
nomena using different methods as a way to calibrate, assess mea-
surement quality, and to identify or possibly correct for bias [25].
This method was used in prior work to evaluate the fidelity of
measurements collected in RIPE Atlas [15], and a related analysis
of latency measurement quality on early-generation RIPE Atlas
nodes was done by Bajpai et al. [5, 6]. Holterbach et al. suggest
providing a “confidence index” along with reported measurement
results, indicating some measure of concurrent load on an Atlas
probe [15]; providing such an index could be facilitated through
the types of metadata gathered by SoMeta.

There have been a number of specific suggestions in prior work
regarding the scope of metadata that should be captured for fu-
ture reference, e.g., [12, 19, 25] and that metadata should be eas-
ily machine-readable [25]. Examples of available metadata (and
the associated data) can be found on Internet measurement data
repositories such as CRAWDAD [17, 18], IMDC [11, 28], and M-
Lab [13, 21]. Most of the metadata found through these platforms
are descriptive, e.g., where, when and how the measurements were

1See https://github.com/jsommers/metameasurement. In an effort to aid reproducibility,
scripts and data used to generate plots can be found by clicking on them.

collected, data format(s), etc., and some of these types of meta-
data are implicit in the data file naming convention (e.g., time of
measurement, measurement node name, measurement tool used).
While some metadata collected through SoMeta are descriptive of
the environment on which measurement tools are run, its main
focus is on gathering system performance data while measurement
takes place. In this regard, SoMeta bears some similarity to M-Lab,
in which limited measures of Planetlab slice performance metadata
gathered through Nagios [23] are available in a JSON format, such
as CPU and memory utilization.

3 DESIGN AND IMPLEMENTATION
3.1 Design Goals
The design of SoMeta is based on three objectives. First, metadata
should be collected by profiling various system resources at discrete
intervals during the time in which an active measurement tool
executes. In particular, CPU, storage/IO performance, and other
systemmeasures should be gathered, and the access network should
be monitored, e.g., the first k hops of the network path. Profiling
should continue as long as the active measurement tool runs. When
the active measurement tool completes, metadata should be stored
in a simple and computer-readable format, e.g., JSON, in order
to facilitate analysis. Basic tools for analysis and visualization of
metadata should be provided to show, e.g., timeseries of idle CPU
cycles, packet drops on an interface, RTT to first router, etc.

The next design objective is the lightweight operation of SoMeta,
which we have designed to be configurably adaptable to a range
of target compute and network settings. Nonetheless, we are also
motivated by the fact that CPU power and network bandwidth to
the edge has increased to the point that the networking and compute
environment in which active network measurement is performed
can sustain additional traffic and processing activity from metadata
capture. For example, even low-cost computer systems (e.g., the
Raspberry Pi Model 3) have significant CPU power in the way of
multiple cores (4 in the case of the Pi 3).

The last design objective of SoMeta is the ability to work seam-
lessly with different systems and measurement platforms. This ob-
jective is imperative to accommodate diverse measurement efforts
e.g., CAIDA uses Raspberry Pi- and 1U server-based Ark moni-
tors [9], Yarrp uses Ubuntu VM [7], BGPmon uses sites with high-
end multicore processors [8], RIPE Atlas currently uses a low-cost
wireless router (TP-Link model TL-MR 3020) with custom firmware
based on OpenWRT [27], etc.

3.2 SoMeta Overview and Implementation
SoMeta has been implemented in a lightweight and extensible way
tomeet the design objectives described above. It is written in Python
and uses the asyncio framework as the basis for structuring and
handling asynchronous events associated with monitoring the host
system and network. Use of asyncio allows SoMeta to be single-
threaded, which helps to limit its performance impact on the host
system on which it runs. Although asyncio’s asynchronous task
scheduling is by no means perfect, we argue that it is sufficient for
the purpose of collecting the types of metadata we envision.

The task of metadata collection is delegated to a set of moni-
tors built in to SoMeta, which we describe below. When SoMeta is
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started up, a user must configure some number of monitors, and also
supplies the command line for executing an external measurement
tool, such as scamper [20]. For as long as the external tool exe-
cutes, SoMeta’s monitors periodically collect system performance
measures or other metadata. When the external tool completes,
SoMeta writes out the metadata to a JSON file along with a variety
of invocation and runtime information such as the full command
line used to start SoMeta, the active measurement command, exit
status, and any text written to the console by the external measure-
ment tool.

3.2.1 Monitoring capabilities. The core functionality of SoMeta is
to monitor, at discrete intervals, host system resources and network
round-trip time (RTT) latencies to specific target hosts. SoMeta can
be configured to collect CPU (e.g., per-core utilization), I/O (e.g.,
read/write activity counters), memory (e.g., utilization), and net-
work interface byte, packet, and drop counters. In addition, a mon-
itor module can be configured to collect RTT samples using hop-
limited probes, or by emitting ICMP echo request (ping) packets
toward specific hosts.

There are five built-in monitor modules available, named cpu,
mem, io, netstat, and rtt. Each of these modules can be sepa-
rately configured, and each executes independentlywithin SoMeta’s
asyncio event loop as a separate coroutine. The discrete interval
at which measurements are collected is configurable, and defaults
to one second. When SoMeta is started, each configured monitor
is initiated after a small random amount of time in order to avoid
synchronization. The cpu, mem, io and netstat monitors leverage
the widely-used psutil2 module for collecting a variety of system
performance measures. Use of this third-party module ensures that
SoMeta can perform effectively on a wide selection of operating
systems, and facilitates the future creation of special-purpose moni-
tors such as battery status or CPU and/or environment temperature,
which can be accessed through existing psutil APIs. Lastly, we
note that the monitoring framework has been designed to be easily
extensible in order to permit new types of metadata to be collected
and stored, or to be able to use an OS-specific performance moni-
toring subsystem such as System Activity Reporter (sar).

The rtt monitor module can be configured to emit either hop-
limited probes (with configurable TTL) using ICMP, UDP, or TCP
toward a destination address, or to emit ICMP echo request probes.
The first four bytes of the transport header can be made constant
to avoid measurement anomalies caused by load balancing [3, 26].
The rttmodule uses the Switchyard framework to access libpcap
for sending and receiving packets, and for constructing and parsing
packet headers [29]. Although the system ARP table is used to
bootstrap its operation, the rttmodule contains ARP functionality.
Moreover, the system forwarding table is retrieved on startup in
order to determine the correct interface out which packets should
be emitted. Lastly, probes are sent according to an Erlang (Gamma)
process [4], and the probe rate is configurable. By default, probes
are emitted, on average, every second.

Within the rtt module, we configure a libpcap filter on a pcap
device so that only packets of interest to the module are received. In
particular, the module only ever receives ARP responses or probe
request and response packets. Since SoMeta’s rtt module uses
2https://github.com/giampaolo/psutil

libpcap, timestamps for both sent and received packets are of
relatively high quality: at worst they come from the OS, and at best
they may come directly from the NIC. Unfortunately, however, use
of libpcap does not imply that operating system differences can
be ignored. In particular, on the Linux platform, libpcap uses a
special socket (PF_PACKET socket) for sending and receiving raw
frames rather than /dev/bpf or a similar type of device on BSD-
derived platforms (e.g., macOS and FreeBSD). A limitation with
Linux’s PF_PACKET socket is that packets that are emitted through
the device cannot also be received on that same device. In order to
obtain kernel-level timestamps on packets sent on a Linux system,
we create a separate PF_PACKET socket for sending packets. There
are yet other (more minor) quirks that are handled within the rtt
module to smooth out platform differences.

3.2.2 Metadata analysis and visualization. Along with SoMeta’s
metadata collection capabilities, we have created simple tools to
bootstrap analysis and visualization of metadata. An analysis tool
can produce summary statistics of round-trip times, flag whether
any probeswere dropped at an interface or by libpcap, andwhether
there were periods of full CPU utilization, among other capabilities.
A plotting tool can produce timeseries or empirical cumulative
distribution function plots of any metadata collected, facilitating
qualitative analysis to identify time periods during which measure-
ments may have been disturbed due to host or network interference.
The plotting capability is based on matplotlib [16] and provides
functionality for plotting individual monitor metrics, all metrics
collected by a monitor, or all metrics across all monitors.

4 EVALUATION
In this section we describe a set of experiments to evaluate SoMeta.
We begin by assessing the performance cost of running SoMeta. We
follow that by examining how SoMeta might be used in practice.

4.1 SoMeta Performance and Overhead
To evaluate the performance costs of running SoMeta, we created
a simple laboratory testbed, which was also connected to a cam-
pus network and the Internet. The platforms on which we ran
SoMeta are two versions of the Raspberry Pi—specifically, a Model
1 B Rev. 2 (Pi1) and a Model 3 B (Pi3)—and two server-class systems.
The Pi1 has a 700 MHz single-core ARM1176JZF-S with 512 MB
RAM and ran the Linux 4.1.19 kernel (Raspbian 7). The Pi3 has a
1.2GHz 64-bit quad-core ARM Cortex-A53 CPU, 1 GB RAM and ran
the Linux 4.4.50 kernel (Raspbian 8). The two server-class systems
are identical Octocore Intel(R) Xeon(R) CPU E5530 @2.40GHz with
16 GB RAM. One was installed with Linux 3.13 (Ubuntu server
14.04) and the other with FreeBSD 10.3. These four systems were
connected through a switch via 100 Mb/s Ethernet (Pi1 and Pi3) or
1 Gb/s Ethernet (two server systems) to a series of two Linux-based
routers, the second of which was connected to the campus network
via a Cisco 6500.

Using the two Pi and two server systems, we ran SoMeta in a se-
ries of configurations to test its resource consumption. In particular,
there were ten configurations we used: (1) only collect CPU perfor-
mance measurements every second, (2) only collect RTT measures
to the closest Linux router using ICMP echo requests, (3) only col-
lect RTT measures to the closest Linux router using a hop-limited
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Figure 1: CPUperformance overhead results (top: Raspberry
Pi Model 1 B; bottom: Raspberry Pi Model 3 B).

probe (with maximum TTL of 1), (4) collect performance measures
using all monitors every second, including measuring RTT to the
closest Linux router using ICMP echo requests, and (5) using all
monitors to collect performance measurements every second but
collecting RTT measures using a hop-limited probe, again to the
closest Linux router. Configurations 6–10 were identical to config-
urations 1–5 except that instead of collecting measurements every
second, SoMeta was configured to collect measurements every 5
seconds. Each of these 10 experiments was run for 900 seconds
by having SoMeta run the command sleep 900 (i.e., the sleep
command is used as the external “measurement” tool). For these
experiments we pinned SoMeta to a single CPU core which, while
not strictly necessary, simplified analysis of CPU usage and system
overhead since 3 out of 4 systems we used were multicore.

Figures 1 and 2 show selected results for the performance over-
head experiments. Figure 1 shows empirical CDFs for CPU idle
percent for the Pi1 and Pi3, and Figure 2 shows empirical CDFs
for RTT for the Pi1 and the FreeBSD server. In the top plot of
Figure 1, we observe that enabling all monitors with a 1 second
average sampling interval incurs the greatest CPU load. Still, the
50th percentile CPU idle percentage is about 88%, which we view
as promising since SoMeta is written in a very high-level language
and has not undergone (at this point) any performance optimiza-
tion. We also observe that when reducing the sampling rate to
an average of once every 5 seconds, the 50th percentile CPU idle
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Figure 2: RTT performance overhead results (top: Raspberry
Pi Model 1 B; bottom: FreeBSD server).

percentage goes up to 97%, which is only 1–2 percent lower than
only measuring CPU usage every second. In the lower plot of Fig-
ure 1 we observe similar trends, but with different specific CPU
idle percentage values. The higher-powered Pi3 is about 97% idle
at the 50th percentile when running all monitors and collecting
measurements, on average, every second. For the two server-class
systems (not shown), the idle percentage is even higher than the
Pi3, at about 98–99% for all monitors with a 1 second sampling in-
terval. Although SoMeta’s performance overhead is modest, it may
yet be too high in shared measurement environments where either
multiple instances of SoMeta may need to be run or its metadata
collection architecture may need to be adapted. We are addressing
this issue in our ongoing work.

In Figure 2 we show RTT results when running all monitors or
only the RTT monitor, and for both ICMP echo request and hop-
limited probes, each for a 1 second average measurement interval.
We observe that the RTTs are, in general, small and distributed
across a narrow range. Given the Pi1’s lower performing CPU, it is
not surprising that the 90th percentile RTT (≈ 0.35 milliseconds) is
more than twice that of the 90th percentile RTT for the FreeBSD
server (≈0.15 milliseconds). The 90th percentile RTT for the Pi3
is between the two (≈0.25 milliseconds) and results for the Linux
server are similar to the FreeBSD server. We note that none of these
systems were configured to perform hardware timestamping on
the NIC (it is not supported on the Pi devices, and the two server
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systems were not configured to do so). Thus all timestamps used to
generate these results were generated in software, in the OS kernel.
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Figure 3: Performance of the Pi1 and Pi3 when configured
for a range of probing rates.

Finally, to better understand SoMeta’s scheduling accuracy and
to examine finer probing intervals which may be needed to monitor
certain experiments, we examine its performance when configured
to emit probes in an increasingly rapid manner, from 1 probe/s up
to 200 probes/s. We ran each of these experiments for 60 sec by
having SoMeta execute the command sleep 60, and we configured
SoMeta with only the CPU and RTTmonitors (in hop-limited mode).
Figure 3 shows the results for these experiments for the Pi1 and
Pi3. We observe that for the Pi1 the CPU is fully utilized at about
25 probes/s, and that the Pi3 can support 150 probes/s with about
25% idle CPU. (CPU utilization on the Pi3 hits 100% around 250
probes/s). We note again that no special performance tuning has
yet been done on SoMeta, including any attempt to compensate
for scheduling inaccuracies with the asyncio module. Importantly,
there were zero packet drops for all experiments on both Pi devices,
and the RTTs measured were statistically identical to those in the
overhead experiments described above. This observation implies
that even when the host system is under significant load, metadata
collected by SoMeta remain accurate, even if they are not gathered
according to the intended schedule. We also examined probe send
time accuracy, which we found to be generally accurate on the
Pi3 when the system was lightly loaded, but poorer on the Pi1,
similar to the findings of [22]. In summary, our experiments show
that using asyncio for task scheduling appears to be sufficient for
modest probe rates but we are nonetheless continuing to examine
how to improve scheduling fidelity.

4.2 Artificial System Load Experiments
For the results described in this section, our goal is to illustrate
how metadata collected by SoMeta could be used to identify and,
to a certain extent, evaluate the impact of system and network
interference on network measurements. For these experiments,
we configured SoMeta to use all built-in monitors and to gather
measurements every second. We also configured it to start the
measurement tool scamper [20] and perform latency measurement
using ICMP echo requests to the Google IPv4 Anycast DNS server
8.8.8.8. Scamper was configured to store its RTT samples in an
external file for later analysis. SoMeta was configured to collect

RTT samples from the first three network hops using either a hop-
limited probe or ICMP echo request probes, and to alsomeasure RTT
to 8.8.8.8. Simultaneous to running SoMeta, we introduced artificial
system and network load in four different experiment types: 100%
CPU load on all cores, memory system load by cycling reads and
writes over a large array, I/O load by repeatedly writing to a file
on the same filesystem as the output files generated by scamper
and SoMeta, and upload and download transfers of a range of file
sizes (100KB, 1MB, and 10MB). CPU, memory, and I/O artificial load
were introduced in an on-off cycle of 60 seconds per cycle, starting
with 60 seconds of no artificial load, followed by 60 seconds of load.
The file transfers to introduce artificial network load were initiated
every 10 seconds from a separate host, but using the same network
path from the first router up through several network hops.

For these experiments, we used the same testbed as in our over-
head experiments described above, and we also deployed a Pi3 in
a home network connected to the Internet via a large cable mo-
dem provider. The Pi3 deployed in the home network was either
attached to the home router using a wired 100 Mb/s connection
or via 802.11n WiFi. Figure 4 shows results for the home network-
deployed Pi3 connected via WiFi to the router, and with artificial
CPU load. The plots show empirical CDFs of RTTs between the
Pi3 and the first hop (home router) (left), between the Pi3 and the
second hop (center), and RTTs to the scamper target IP address
8.8.8.8. For each plot, we show CDFs for all RTT measurements,
as well as separate CDFs for the no artificial load time periods
(off) and when artificial CPU load is introduced (on). For each plot,
we observe that the artificial CPU load has a clear skewing effect
on the latency measurements. An experimenter using SoMeta to
detect subpar local conditions could (1) evaluate the CPU-related
metadata to discover that there were time periods during which
there was zero (or very little) idle CPU, and/or (2) compare (either
visually, or in a more rigorous quantitative or statistical way) the
latency data generated from the experiment with data previously
collected during known “good” time periods. We note that the “off”
curve from the left-hand plot of Figure 4 is virtually identical to a
curve generated from a separate experiment in which no artificial
load is introduced (not shown).

Lastly, in Figure 5 we show results for the artificial network load
experiment with the Pi3 again in the home network environment.
Results are shown for file transfer sizes of 100KB, with the Pi3 con-
nected to the home router via 1 Gb/s wired Ethernet. File transfers
were initiated from a separate host connected via WiFi. The net-
work path of the file transfers shared the same network path as the
probes toward 8.8.8.8 for the first 6 hops. In Figure 5, we show CDFs
from measurements in which no artificial load was introduced, and
CDFs from the artificial network load experiment; note the log scale
on the x axis. First, we observe that the first network hop is largely
undisturbed. Recall that the access technologies for the Pi3 (wired
Ethernet) and the host from which file transfers are initiated (WiFi)
differ, thus we do not observe any obvious interference at this hop.
For subsequent hops, however, we observe significant skewing even
with the transfer of a relatively small file. An experimenter might
become aware of the local network disturbance in a similar way as
described above, by comparing (as shown in the figure) newly col-
lected data with measurements collected during known quiescent
time periods. We note that in a similar experiment in which the
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Figure 4: Artificial CPU load experiment.
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Figure 5: Artificial network load experiment.

Pi3 is connected to the home router via WiFi (not shown), first-hop
latencies are observed to be skewed since the Pi3 and the host from
which data transfers originate share the WiFi access.

5 SUMMARY AND FUTURE
DIRECTIONS

We view the current monitoring capabilities and kinds of data that
SoMeta can collect as a starting point toward our goal to simplify
collection and analysis of certain types of metadata for Internet
measurement experiments. Our results show that even on devices
with limited resources, e.g., the Pi1, the cost of collecting host perfor-
mance and local network measures is low. In particular, about 12%
CPU overhead on a Pi1 is incurred using a modest data sampling
rate of once per second, or less than 3% with a sample rate of once
every five seconds. The potential benefit of these measurements is
high, as the results from our experiments show in which artificial
system and network load is introduced. In particular, the differences
in performance measures gathered during quiescent periods com-
pared with measurements collected when artificial CPU, memory,
I/O or network load is present make it apparent that something in
the local environment has perturbed the measurement.

In our ongoing work, we are considering a number of directions
which we think this work opens up. First, we intend to examine the
idea of treating network latency measurements between a host and
local network systems that are explicitly collected during quies-
cent conditions as a baseline reference to use for calibration of new
measurements. For example, while it is straightforward to evaluate

certain host system measures (e.g. CPU utilization) to determine
periods during which system load may contribute to poor network
measurement, we believe that one way to gain evidence of impaired
measurement quality is to collect additional latency measures via
SoMeta’s RTTmonitor and compare themwith previously collected
data. In other words, the previously collected measurements could
be used as a reference against which to compare, e.g., qualitatively,
or using a statistical test such as the Kolmogorov-Smirnov two-
sample test. Any shift away from the baseline reference could be
detected and possibly even corrected in the network measurements,
and at the very least, a measurement quality label could be applied
to different time periods of a trace based on analysis of additional
measurements collected through SoMeta.

Secondly, while SoMeta is, at present, decoupled from any partic-
ular measurement tool, we are considering an API through which
measurement tools (or other data sources) could explicitly provide
metadata to assist with creating a comprehensive, structured record
of an experiment for documentation and scientific replication pur-
poses. In addition to providing an avenue for metadata storage,
status/health polling (i.e., “heartbeats”) could be done through such
an API, and meta-API information (i.e., response time) could be
used for continuous assessment of system performance.

There are yet other extensions we are considering to SoMeta that
we believe will make it appealing for a wide variety of usage sce-
narios, including automatic identification and dynamic monitoring
of file systems/disks and network interfaces that are being used by
a measurement tool, performance improvements for adapting to
extremely constrained environments and to shared measurement
platforms where there may be multiple experiments executing si-
multaneously. Whether or not SoMeta sees wide use within the
network measurement community, we hope that our study pro-
vokes a renewed discussion on the role of metadata in assessing
measurement quality and experiment reproduction.
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