
Scalable Network Path Emulation

Shilpi Agarwal Joel Sommers Paul Barford
University of Wisconsin-Madison
shilpi,pb,jsommers@cs.wisc.edu

Abstract

Laboratory-based experimentation is an increasingly
popular method for conducting network research since it
enables implementations of network systems and protocols
to be evaluated. Most research conducted in lab-based en-
vironments requires the faithful reproduction of wide area
network conditions. An important step toward satisfying
this requirement is the creation of paths between nodes
in the lab that have the same characteristics as paths be-
tween nodes in the Internet. In this paper, we describe and
evaluate a new, highly scalable, software-based path em-
ulation tool called NetPath. We describe the design and
implementation of NetPath, which features fixed and prob-
abilistic packet propagation delay emulation, probabilis-
tic bit errors, probabilistic packet loss, packet duplication,
and packet reordering capability. Through a series of con-
trolled laboratory experiments, we demonstrate that Net-
Path offers over three times the loss-free throughput capac-
ity of other popular software-based path/network emula-
tors. We show that under moderate load NetPath’s mean
propagation delay emulation precision is within 1% of a
hardware-based reference emulator. This result represents
a significant improvement over other software-based emu-
lators. We illustrate how, relative to our hardware-based
reference, NetPath improves application traffic behavior
over other software-based emulators. Finally, we demon-
strate and characterize NetPath’s ability to provide path
emulation simultaneously on multiple physical links. This
capability, which is facilitated through the use of our link
configuration tool, enables laboratory system resources to
be more efficiently utilized.

1. Introduction

An important challenge in the networking and dis-
tributed systems research communities is the development
of innovative testbed environments that enable new tech-
nologies to be evaluated thoroughly and accurately [9, 13,

15]. One of the primary purposes of testbed environments
is to create a spectrum of realistic conditions that might
be found in operational networks. Over the past five years,
several important network testbed infrastructures have been
developed that are scalable, flexible and offer greater real-
ism than traditional analytic modeling or simulation tools.

The current generation of network research testbed envi-
ronments can be roughly divided into two categories. The
first type of testbed setting, in situ infrastructures, consists
of managed host systems distributed across the Internet.
Examples include PlanetLab [8] and the RON testbed [5],
which in some ways follow in the tradition of NIMI [3] and
other widely deployed measurement infrastructures. These
environments provide highly realistic network conditions
since hosts are deployed in the Internet. While they are
ideal for addressing questions on Internet structure and be-
havior, the inherent lack of ability to reproduce conditions
across experiments limits their utility. The second category
of testbed environments include those based in laborato-
ries [1, 7, 18, 23, 24]. A canonical example is the Emulab
testbed at the University of Utah which features a large set
of commodity workstations that can be flexibly configured
to conduct a wide variety of experiments [24]. While these
environments offer the capabilities of end-to-end node con-
figuration and complete instrumentation and repeatability,
creating conditions representative of wide area networks
continues to be a significant challenge.

There are many factors that contribute to creating real-
istic wide area network conditions in a network research
laboratory. We argue that the accurate emulation of link
characteristics is one of the most important and challeng-
ing. We define link emulation as the task of recreating the
conditions experienced by packets on a single link physi-
cally (or virtually) connecting two nodes in a network. As
such, link emulation is primarily focused on the impact of
layers 1 and 2 in the network protocol stack. In a lab envi-
ronment this means emulation of two properties:
• Propagation delay, the speed of light delay for each bit
due to the physical distance between two nodes, is modeled
as a constant delay per bit.



• Bit errors are caused by noise and other factors along
the physical path between two nodes and are modeled as a
probabilistic change of state per bit.

Link emulation capability is of particular importance in
experiments with topological configurations that are meant
to recreate a specific wide area network. In these cases,
some nodes are configured to act as routers and others as
end hosts, so the lab infrastructure must be able to emulate
the desired link characteristics between these nodes.

In experimental configurations that do not attempt to in-
stantiate specific topologies, it is often desirable to emulate
the network path characteristics between hosts. We define
path emulation as the task of recreating the physical con-
ditions experienced by packets on an end-to-end path be-
tween hosts in a network. Path emulation is a superset of
link emulation and includes the following properties:
• Packet latency is the aggregate of signaling delay
(caused by the network interface cards), the propagation
delay (caused by the physical distance between two hosts)
and the queuing delays (caused by routers along the path).
The sum of these delays is modeled as a probabilistic delay
per packet.
• Packet loss is the drop of a packet due to a full bottleneck
queue on the path between two hosts, and is modeled as a
probabilistic event.
• Packet duplication is modeled as a probabilistic cloning
of a packet on the path between two hosts.
• Packet reordering shuffles packets from the order in
which they arrive on a link and is modeled as a probabilistic
event.

Path emulation differs from network emulation which
attempts to “subject each packet to a delay, bandwidth, and
loss characteristics according to a target topology” [23].
Path emulation has no notion of a core network topology
and is therefore less ambitious in its objectives. Path emu-
lation also does not attempt to emulate router characteris-
tics such as statistical multiplexing, queuing and switch-
ing capabilities. Such characteristics vary widely in the
Internet depending on specific hardware implementations.
Path emulation targets the basic causes of packet variabil-
ity on multiple-hop, wide-area connections between hosts.
Finally, while mimicking link capacity is often listed as a
distinct feature in network emulators, we do not consider
it a distinct component of path emulation. The essence of
capacity limitation is to add latency to each bit equal to
the inverse of a specified rate. Thus, experiments requiring
links of certain capacities can be accommodated through
the propagation delay mechanism.

1.1. Current Methods for Path Emulation

The basic task of path emulation can be abstracted to
the ability to flexibly buffer packets transmitted between

two nodes. Buffering enables delays to be assigned to indi-
vidual packets. Also, while packets are buffered, they can
be duplicated, reordered or dropped. Over the years, many
software-based systems have been developed for commod-
ity hardware with the general objective of providing these
functions [4, 6, 10, 11, 12, 14, 20, 21, 23]. Each of these
systems differs from the others either in terms of their em-
ulation objective, performance, or in how they are meant to
be deployed for use in experimental environments.

There are many possible approaches to both link and
path emulation. One extreme method for implementing
propagation delays is the use of large spools of cable to ef-
fect specific delays between systems. While this approach
has obvious drawbacks, it provides accurate delays and is
actually used in commercial labs. Another approach is to
use specialized hardware developed for the purpose of de-
lay emulation such as that offered by Spirent Communica-
tions [2]. Such systems provide precise link delays, proba-
bilistic bit errors and probabilistic packet loss.

The most common approach to link and path emulation
is to use general purpose computing hardware to run link
and path emulation software. Two widely-used software-
based link/path emulation tools are Dummynet [21] and
NIST Net [12]. Dummynet is an in-kernel network emu-
lation system that can be run on end hosts running other
applications, or on a dedicated system interposed between
two others in a lab. NIST Net is also a kernel-based
emulation and can be interposed much like Dummynet.
Like other network emulators, including [10, 23], NIST
Net was developed with the high level design objective
of being a “network-in-a-box” [12]. We consider this to
be an overly ambitious objective for many reasons (e.g.,
see [16]). While software-based emulators like Dummynet
and NIST Net offer many useful features and are cost ef-
fective, they must provide a high level of accuracy and per-
formance across a broad range of use scenarios.

1.2. Our Approach to Path Emulation

In this paper we describe NetPath, a new network path
emulation system designed to provide performance ap-
proaching hardware-based solutions—well beyond the ca-
pabilities of other software-based systems. NetPath offers
the ability to add fixed and probabilistic packet delay, prob-
abilistic packet loss, probabilistic packet duplication and
packet reordering to links in a network. NetPath’s im-
plementation is based on the Click modular router plat-
form [17]. Click is an extensible, high performance packet
processing system that runs on commodity hardware. Click
offers several of the basic capabilities required for path em-
ulation, making it a natural platform for our work. The
primary challenge in NetPath’s development was to create
a reliable, high capacity queuing system that significantly
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extends the basic packet buffering capabilities in Click. We
extended Click to seamlessly and efficiently utilize both
RAM and disk resources on the NetPath host system. We
also briefly describe VICT (virtual interposition configura-
tion tool), a configuration tool we developed to allow Net-
Path to easily be used in a variety of testbed setups.

The objectives of our evaluation of NetPath are to
demonstrate its raw performance capabilities from the per-
spectives of precision, throughput, and scalability. We
also compare these capabilities with Dummynet, NIST Net
and Modelnet [23]. Our results show that our new queu-
ing module yields high throughput rates and supports over
three orders of magnitude longer emulated delays without
packet loss versus the standard Click queue. We also show
that under a moderate traffic load NetPath’s delay emu-
lation precision is consistently within 1% of a hardware-
based reference emulator. Our comparative analysis shows
that NetPath offers over three times the loss free through-
put capacity and orders of magnitude better delay preci-
sion than other software-based reference emulators. We
demonstrate how NetPath improves application traffic be-
havior over other software-based emulators, relative to our
hardware-based reference. Finally, we investigate the scal-
ability of NetPath under multiple link configurations.

1.3. Implications

There are several key implications of this work. First,
the ability of NetPath to provide higher throughput and bet-
ter precision than other software-based network emulation
systems means that evaluation of delay sensitive protocols
and systems can be conducted under more realistic con-
ditions. Second, the scalability of NetPath and its ability
to accommodate high-throughput multi-link configurations
means that resources in research labs can be used more ef-
ficiently. Third, the automated network configuration ca-
pability offered by VICT should enable NetPath to be used
widely in a variety of laboratory environments. NetPath is
freely available for download and evaluation.

2. Architecture and Implementation

In this section, we describe the design objectives and
general architecture of NetPath. We then describe imple-
mentation details of NetPath, including specific challenges
faced in its development. We also briefly describe the con-
figuration tool VICT.

2.1. Architecture

Network laboratory testbeds can contain thousands of
individual links between network interfaces on routers,

switches, and end hosts. Our project is framed in the con-
text of balancing the desire of testbed operators to use a
limited number of commodity host systems for path em-
ulation and the need of researchers to accurately create a
range of network path conditions.

The design objectives for NetPath were to create a sys-
tem that could (1) offer high precision link and path em-
ulation capability, (2) operate effectively on network links
beyond 100 Mb/s, and (3) operate effectively on multiple
network links at the same time. Practical considerations
related to the use of NetPath in lab environments led to ex-
tending the design objectives to include the ability to easily
configure VLANs and/or MPLS paths to deflect packets on
specific links through a node running NetPath.

2.2. NetPath Implementation

Path emulation as defined above implies the need for a
packet processing system as the basis for our implemen-
tation. For this functionality we chose the Click modu-
lar router1—an open source platform for building packet
switching system that runs on commodity hardware [17].
Click offers three key features that make it a natural choice
for NetPath. First, Click has high performance packet
switching capabilities due to its kernel-based implemen-
tation and the ability to operate in polling (instead of in-
terrupt) mode with respect to the network interface card
(NIC). Second, Click is designed for extensibility. Click-
based systems consist of primitive elements which are ar-
ranged to perform some desired function. The Click dis-
tribution provides a library of elements that can be ex-
tended for new functionality. Third, Click is designed to
be easily configured through a declarative language that
defines inter-element connectivity. The configuration lan-
guage also supports higher level abstractions through defi-
nitions of compound elements.

2.2.1. Basic Link Emulation. Basic link emulation
consists of the following: read packets from the NIC, de-
lay them in a queue for a specified fixed interval and then
send them out on a network interface ensuring that they
are headed for the proper destination. These functions re-
quire the selection of appropriate Click elements, which
are illustrated in Figure 1. For good performance, the
first element in our system is PollDevice which polls
a specified NIC and reads and timestamps packets when
they arrive. Deferring discussion of the Classify and
StrideScheduler elements for now, the next step is to
delay packets. This function is implemented through the
Queue and Delay elements. Queue, a simple FIFO,
is required since the interarrival time of packets can be

1We developed NetPath using the v1.3pre1 distribution of Click.
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Figure 1. Click elements used in basic and
multiple link emulation. Lighter elements
were modified and extended for NetPath.

shorter than the specified delay interval. Delay is a single-
packet buffer which, if empty, pulls packets from the head
of Queue, computes the elapsed time since the packet’s
arrival, then holds it according to the desired delay set-
ting. Our definition of link emulation includes the ability to
cause random bit errors in packets. If enabled by the user,
this function is included in the Delay element by toggling
the first bit in the packet payload based on sampling a pre-
computed table of uniformly generated random numbers.
The final step in basic link emulation is to place the packet
on a network interface with the proper addressing infor-
mation. The ChangeTag element takes a packet from
Delay, encapsulates it with the appropriate addressing in-
formation, then sends it to the final element. ToDevice
accepts packets from ChangeTag and is responsible for
sending them to the NIC.

2.2.2. Emulation of Multiple Links. In addition to
the elements related to basic link emulation, Figure 1
includes the Classify and StrideScheduler ele-
ments. The design requirements for flexible and efficient
use of host systems implies the ability to assign differ-
ent delays to packets based on their source and destina-
tion addresses and port information. Classify pulls
packets from PollDevice and, based on addressing in-
formation, passes them to the appropriate queue. The
StrideScheduler multiplexes packets from the dif-
ferent link emulation paths and sends them on to the
ToDevice element. The Click distribution includes all of
these basic elements except for ChangeTag, and Delay
only required a minor modification to enable probabilistic
bit errors.

The ChangeTag element insures that outgoing pack-
ets from the emulator are correctly forwarded. Our primary
consideration in developing ChangeTag was for NetPath
to be easily used in any one of two physical configura-
tions: direct interposition between hosts (i.e., through the
use of two network interface cards on the NetPath host

and no other hub, switch or router) or virtual interposition
between hosts in both switched and routed environments.
We developed the ChangeTag element to operate at the
link layer of the protocol stack, and to facilitate packet
routing through NetPath via Virtual Local Area Networks
(VLANs), in the case of switched links, or via Multiproto-
col Label Switching (MPLS), in the case of routed links.
While configuration of the required VLANs and/or MPLS
routes in the switches or routers can be done by hand, we
developed VICT to facilitate this task.

2.2.3. High Performance through Enhanced Buffers.
While the Click platform enabled us to bootstrap our de-
velopment effort, the performance of the basic elements
fell short of our design objectives. As we will see in § 3,
when larger delays are specified, the basic Queue element
quickly overflows and packets are lost. Eliminating bottle-
necks (and by extension unwanted packet loss), while nec-
essary for maintaining precise control over packets pass-
ing through NetPath, was one of the primary challenges of
this project. In comparing NetPath to other emulators, we
found that they are also vulnerable to unwanted loss. We
use loss as one of our metrics for comparison in § 3.3.

Our initial step in addressing unwanted loss was to mod-
ify the basic Queue element. Queue is implemented as a
queue of packet pointers and is restricted to a maximum
of 32K packets. Our implementation consists of an array
of circular queues in which each queue has a maximum
size of 32K (due to kernel restrictions on memory alloca-
tion). With this implementation, users can specify the de-
sired quantity and size of each queue up to the total amount
of available RAM on the host. While this modification has
an important positive impact on performance, the overall
scalability of the system is still limited by available RAM.

For greater scalability we created a seamless buffering
mechanism that couples Queue to storage allocated on
disk. We created the DiskQueue element to allocate and
manage auxiliary queues on disk. When a queue in RAM
fills, DiskQueue enables subsequent packets to be writ-
ten to an associated queue on disk. As space is recovered
in the RAM queue, DiskQueue shifts packets from the
auxiliary queue to the RAM queue. Our challenges in de-
veloping this element were in keeping track of the bound-
aries of packets written to disk and in efficiently interacting
with the virtual memory system of the host. The tasks of
writing to and reading from the auxiliary queues are man-
aged by a single thread which uses configurable thresholds
to determine the quantity of data to transfer between RAM
and disk. When these tasks execute, other tasks may be
preempted which, depending on the traffic conditions, can
lead to packet loss. Thus, the thresholds must be selected
based on the NetPath configuration, host capabilities and
expected traffic load.
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2.2.4. Queue Management on Two Disks. While the
ensemble of DiskQueue and Queue enhances the scala-
bility of NetPath, random accesses to disk can cause perfor-
mance degradation. To address this problem, we enhanced
DiskQueue to take advantage of a host system with two
disk drives. Our approach is to begin writing on disk A
until a read request arrives. Subsequent write requests are
then directed to disk B until reads have exhausted all of the
data that had been previously written to disk A. Reading
then switches to disk B and writing switches back to disk
A. We call this opportunistic disk queue management. This
simple algorithm reduces the amount of seek time for disk
heads and we show in § 3.2 that it increases performance.
The caveat for this algorithm is that it will not necessarily
improve performance when multiple disk queues are in use.

2.2.5. Other Path Emulation Features. NetPath’s
configuration of standard Click elements plus our modi-
fied queuing capabilities implement the basic link emula-
tion functions scalably and with good performance. How-
ever, further additions were required to meet our objectives
for path emulation. Specifically, in addition to applying
fixed constant delays to packets we wanted the ability to
probabilistically delay, drop, duplicate and reorder pack-
ets. Dropping and duplication is a simple matter of making
a binary decision based on sampling a precomputed table of
uniformly distributed random numbers (distributions other
than uniform could be trivially added to NetPath). Proba-
bilistic delay values are assigned from a precomputed table
of normally distributed random numbers (with user speci-
fied mean and standard deviation). A subtle problem in our
implementation causes head-of-the-line blocking to occur
in the queues for some packet arrival processes. This can
skew the shape of the resulting delay distribution. As future
work, we are investigating different methods for addressing
this problem. Probabilistic reordering of packets also de-
pends on the packet arrival process and requires us to cre-
ate a customized combination of the Queue and Delay
elements. This combined element only makes a reorder-
ing decision when multiple packets are enqueued. If a re-
ordering decision is made (based on sampling the uniform
random number table), then the second packet in the queue
is serviced before the first. More complex reorderings are
certainly possible but are beyond the scope of this work.

2.2.6. VICT implementation. NetPath can be used for
path emulation on multiple links. To configure such se-
tups in both routed and switched environments, we devel-
oped VICT. To implement NetPath’s virtual interposition,
we employ VLAN tagging in switched environments and
MPLS tagging in routed environments. VLAN tags are 12-
bit fields identifying virtual LAN membership information.
Similarly, MPLS tags are 20-bit virtual circuit identifiers.

VLAN and MPLS tags, along with MAC addresses, are
the primary mechanism for directing packets between other
lab systems and NetPath. Obviously, VICT and NetPath
will not be able to be used on multiple links in environ-
ments that do not support VLANs or MPLS. However, both
of these protocols are commonly available in network sys-
tems today so our tools should be widely applicable. Our
VICT implementation is about 1,000 lines of Perl, and cur-
rently supports Cisco’s IOS configuration language. As fu-
ture work we intend to modify and expand VICT to support
configuration languages of other popular network hardware
vendors.

3. Performance Evaluation

Our objectives in evaluating NetPath were to assess its
raw performance characteristics and to compare its perfor-
mance with other similar tools. We verified the probabilis-
tic bit errors, loss, duplication and reordering capabilities of
NetPath for correctness but do not present results on their
performance other than to say that the functions work as de-
scribed in § 2. The focus of our evaluation efforts was on
the throughput, scalability and precision properties of Net-
Path. As discussed in § 2, one of the primary limitations of
path or network emulation systems is their ability to han-
dle high traffic loads without dropping packets. Thus, in-
stead of simply considering raw performance as a function
of load, we consider loss-free performance as a function of
load as one of our primary evaluation metrics.

3.1. Experimental Testbeds

Our basic experimental testbed, shown in Figure 2(a)
consisted of a commodity workstation, Cisco 6500 switch,
and a Spirent AX/4000 traffic generator [2]. The worksta-
tion contained a 2 GHz Intel Pentium 4 with 1 GB main
memory and a 32 bit, 33 MHz PCI Bus, two Intel/Pro 1000
Gigabit Ethernet adapters, and ran Linux (2.4.18 kernel)2.
The host was also configured with two disk drives, both
30 GB IDE with DMA/ATA-133 interfaces. The Spirent
AX/4000 is a high performance network test appliance with
precise traffic stream generation and measurement capabil-
ity. Our system was configured with OC-3 (149.76 Mb/s)
and Gigabit Ethernet interfaces. Unless otherwise noted,
the experiments below used the Gigabit Ethernet interfaces.
All ports are synchronized to one clock. Thus, using the
AX/4000 as both a traffic source and sink we were able
to measure one way propagation delays with precision on
the order of single microseconds. Unless otherwise noted,
the traffic for each test was a constant rate stream of 66

2For the NICs, we used the Intel e1000 device driver and set
TxDescriptors to 4096, the maximum possible value.
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(a) In our basic setup, constant rate UDP streams
produced by the AX/4000 were redirected to Net-
Path via a Cisco 6500 switch. After NetPath pro-
cessing, packets returned to the AX/4000, where
propagation delays and loss rates were measured.
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(b) An extended setup was used for evaluating application traf-
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traffic generator across a dumbbell-like topology.

Figure 2. Experimental testbeds used to evaluate NetPath.
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byte UDP packets. Our extended testbed, shown in Fig-
ure 2(b), was used for evaluating application traffic per-
formance. It consisted of a dumbbell-like topology with a
bottleneck OC-3 link between two Cisco GSRs, with Cisco
6500s used to aggregate end host traffic and divert packets
to the path emulation host. The testing protocol for our ex-
periments consisted of generating traffic streams and taking
measurements over a period of 10 minutes.

3.2. NetPath Raw Performance Characteristic

We first consider the performance of NetPath by evalu-
ating its throughput in terms of maximum loss-free packet
forwarding rate (MLFFR). The MLFFR is the maximum
rate at which no loss is measured in the received packet
stream for the entire duration of the experiment. The fo-
cus of this experiment is on measuring the MLFFR of Net-
Path for packets of various lengths. As discussed in [17]
throughput in Click can be limited by various hardware
components such as CPU, PCI bus or the network adapter.
To consider this issue, we evaluated throughput perfor-
mance on two different workstations which differed only
in their PCI bus configuration (both 32 bits wide, running

at 33 or 66 MHz). As shown in Figure 3, NetPath can sus-
tain a MLFFR of 310K minimum sized packets per second
in the 33 MHz configuration and at least a 50% higher rate
on the 66 MHz PCI system. This suggests that the PCI bus
bandwidth plays an important role in limiting throughput3.

Next, we evaluated our modifications to the Queue el-
ement. For these experiments, we tested four different in-
stances of Queue: the base element provided in the stan-
dard Click distribution (which we refer to as Queue); the
extension enabling all of RAM to be used (which we refer
to as BigQueue); the extension enabling auxiliary queues
on disk (which we refer to as DiskQueue); and the exten-
sion enabling auxiliary queues on two disks (which we re-
fer to as opportunistic disk queue management—ODQM).
We begin by showing the maximum possible propagation
delay that can be realized on a link without packet loss for
various input rates in Figure 4. We can see that BigQueue
enables an order of magnitude longer delays than Queue.
Since typical transcontinental propagation delays in the In-
ternet are of the order of 10’s of milliseconds, BigQueue
is capable of providing this capacity on high throughput

3The fact that the CPU is always near 100% utilization due to polling
makes it somewhat more difficult to do bottleneck analysis.
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links. We will show later in § 3.3 that these propagation
delays are also highly precise.

DiskQueue and ODQM were created to enhance Net-
Path’s scalability for applications such as large propaga-
tion delay emulation and capacity emulation. We evalu-
ated the capabilities of these systems by fixing the incom-
ing traffic rate to 100 Mb/s, and configuring NetPath to
emulate a capacity of 10 Mb/s. In this experiment, tests
are run for 3 minutes—what might be considered to be an
exceptionally long burst in the Internet. In Figure 5, we
show the packet loss rates for packet streams with differ-
ent size packets for all of the queue element implementa-
tions. We experimented with different packet sizes since
Click allocates memory based on packets received—thus
the effective allocation rate and the amount of space al-
located goes down as packet size increases. The figure
shows that the basic Queue is not useful for this appli-
cation. When BigQueue is used, packets are lost because
of overflow. DiskQueue enhances performance by about
300% and ODQM achieves 4 times better throughput than
the DiskQueue. Packet loss still occurs in both DiskQueue
and ODQM due to buffer overflows at the NIC. This is due
to the overhead of the read/write tasks in these implemen-
tations which occasionally block the polling task. The im-
plication of this result is that the auxiliary queues created
by the DiskQueue element enable bursty traffic, common
in the Internet [19], to be handled effectively.

As explained in § 2, our implementation of probabilistic
delays follows a normal distribution based on user spec-
ified mean and standard deviation. We demonstrate Net-
Path’s ability to create delays that follow the specified dis-
tributional characteristics in Figures 6(a) and 6(b). These
figures show the cumulative distribution function of gen-
erated delays and compare them to the measured distri-
bution. We considered two different configurations, each
with mean delay of 30 milliseconds, one with standard de-
viation 3 milliseconds (i.e., variable delays) and one with
standard deviation 30 microseconds (i.e., relatively stable
delays). Each test was run with two different offered loads,
10 Kpps and 1 Kpps. From the figure, as variability in-
creases, the mean of the measured delay is shifted by about
10 milliseconds for 10 Kpps and about 5 milliseconds for
packet rate 1 Kpps. This effect is due to head-of-line block-
ing. Clearly, the distributional difference between the spec-
ified delay values and measured delay values depend on the
packet inter-arrival times and the variability in delay. This
result indicates that the current functionality for probabilis-
tic delays is adequate for applications in which typical ar-
rival times are longer than typical delay times.

One of the design goals for NetPath was that it sup-
port emulation of multiple point-to-point links at the same
time. NetPath’s design enables multiple Queue-Delay-
ChangeTag sequences to be operational on a single host.

Table 1. Comparison of delay precision of
NetPath versus the Adtech SX-14 hardware-
based emulator. Values indicate mean delay
(standard deviation) delivered by each sys-
tem, in millisec.

offered load NetPath Adtech SX-14
(Kpps) µ (σ) µ (σ)

50 10.03 (0.01) 9.99 (0.00)
100 10.03 (0.01) 9.99 (0.00)
150 10.04 (0.01) 9.99 (0.00)
200 10.05 (0.01) 9.99 (0.00)
250 10.06 (0.01) 9.99 (0.00)
300 10.09 (0.03) 9.99 (0.00)

Packets exiting each of these element sequences are sub-
ject to the StrideScheduler element prior to arrival at
the ToDevice element. Thus, increasing the number of
links not only increases classifying overhead but also the
scheduling overhead which can affect both the cumulative
forwarding rate and the precision of the system.

Figure 7(a) demonstrates these effects. In this experi-
ment, we increased the offered packet rate evenly across
all links until packet loss occurred on any link. Increasing
the number of links from one to ten results in about a 7%
reduction in the overall forwarding rate. This result indi-
cates that NetPath can be effectively used for simultaneous
path emulation on multiple links as long as the overall in-
put rate for all paths is less than about 90% of the maximum
throughput rate for one link. An important implication of
a highly scalable system is in reduction of the number of
hosts required for path emulation in a laboratory testbed.
Figure 7(b) illustrates the number of systems required if
one per link are used (as is the case in some network re-
search labs today) compared with assigning multiple links
per NetPath host for given offered loads. Clearly, substan-
tial savings are possible.

3.3. Comparative Performance

Our first comparative performance test of NetPath con-
siders its capability of generating high precision delays
compared with a hardware-based emulator, an Adtech SX-
14 [2]. Our SX-14 was configured with two OC-3 inter-
faces enabling it to be physically interposed between two
nodes. We used OC-3 ports on AX-4000 for traffic gener-
ation and measurement of the SX-14. We configured the
system for a fixed delay of 10 milliseconds, and, like our
other experiments, measured the delays of packets passing
through the system using different offered packet rates over
a period of 10 minutes. We ran the same series of tests us-
ing NetPath (with the configuration shown in Figure 2(a)).
Table 1 shows that NetPath’s mean delay is within 1% of
the SX-14 mean delay. The table also shows that Net-
Path’s mean delay is relatively higher than the SX-14 due
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Figure 6. Probabilistic delays produced by NetPath under two different offered loads for generated
delays of mean 30 millisec. and two standard deviations of 3 millisec. (left) and 30 microsec. (right).
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Figure 7. Scalability of NetPath when multiple links are configured.

to the inherent overhead of software-based systems. We
also see from the table that there is very low variability
in delays generated by NetPath. An implication of these
results is that as input rates approach the maximum loss-
free forwarding rate, NetPath provides precise delays—
approaching those of dedicated systems like the SX-14.

Next, we compare the performance of NetPath with sev-
eral widely-used software-based network emulation tools
including NIST net, Dummynet, and Modelnet4. Our as-
sessment of performance considers the throughput and pre-
cision of each tool through a series of four identical ex-
periments. Each experiment measures the software-based
emulator’s performance under a variety of input rates using
66 byte UDP packets. We configured each tool to provide
a modest 10 millisecond delay on a single link in each ex-
periment.

4On the same host system as NetPath, we configured NIST net (ver-
son 2.0.12), and on a separate partition installed FreeBSD version 4.8 for
Dummynet and Modelnet (version 0.96). On the FreeBSD system, we set
the system clock rate to 1 kHz and set NMBCLUSTER to 65K, according
to Dummynet and Modelnet documentation.

Figure 8 shows the mean and standard deviation of mea-
sured delays for NetPath, NIST net, Dummynet, and Mod-
elnet respectively. Table 2 contains selected values from
these experiments. The results indicate that NIST net’s de-
lay precision is fairly accurate up to 80 Kpps but beyond
this the deviation from the target delay begins to increase.
Degradation at this threshold can be attributed to the inter-
rupt driven implementation of NIST net. Similar to NIST
net, Dummynet shows good performance up to 80 Kpps
but beyond this, performance degrades dramatically. Mod-
elnet’s performance is the best of the software-based em-
ulators up to about 140 Kpps, but beyond 150 Kpps, we
were unable to get any response. A further point of com-
parison of delay precision is the variability of delays. Ta-
ble 2 shows that standard software-based emulators will not
provide precise delays on links under heavy load, and that
NetPath is stable over the range of these conditions.

Delay distribution is a useful metric for comparing
software-based emulators but is incomplete since there is
no notion of loss-free forwarding. Figure 9 shows the
packet loss characteristics of each tool as a function of of-
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Table 2. Delay precision for emulation sys-
tems over a range of offered loads (incoming
packets per second). Values indicate mean
delay (standard deviation) delivered by each
system, in millisec.

offered load NetPath NIST net Dummynet Modelnet
(Kpps) µ (σ) µ (σ) µ (σ) µ (σ)

40 10.04 (0.01) 10.14 (0.03) 10.00 (0.35) 10.06 (0.13)
80 10.04 (0.01) 10.52 (0.40) 10.23 (0.46) 10.10 (0.20)

120 10.04 (0.01) 12.75 (0.84) 29.08 (1.68) 10.56 (0.45)
160 10.04 (0.01) 16.47 (1.96) 399.00 (3.50) -failure-

fered load. NetPath does not drop packets over the entire
range. Dummynet and Modelnet begin to drop after 40
Kpps and NIST net after 80 Kpps5. Implications of these
results are significant since inadvertent packet loss can have
a great negative impact on many types of experiments.

As a final point of comparison, we looked at effects on
application traffic by NetPath, NIST net, and Dummynet
using the testbed shown in Figure 2(b). We configured
each path emulation system to introduce an 80 millisecond
round-trip time propagation delay and used the Harpoon
traffic generator [22] to create self-similar web-like TCP
traffic over a range of bit and packet rates, from approx-
imately 60 Mb/s (20 Kpps) through 150 Mb/s (45 Kpps).
At Harpoon clients, we measured response times (time be-
tween the initial SYN to the first data response packet from
the server). We also captured all packet headers on the
bottleneck link using an Endace DAG 3.5 card and mea-
sured packet drops at the bottleneck queue. In addition to
the three software emulators, we ran experiments using the
Adtech SX-14 to obtain a hardware-based reference point.
All experiments were run for 10 minutes.

Figure 10 shows the distribution of response times mea-
sured by the Harpoon clients for the lowest offered load
(60 Mb/s, 20 Kpps). Response times are shown relative to
the SX-14 reference. We see that response times through
NIST net are, on average, slower than the SX-14, and are
quite variable. NIST net drops packets during this exper-
iment, causing retransmissions and an overall shift in re-
sponse times. For Dummynet, while the mean response
times are closer to the reference point than NIST net, there
is very high variance indicated by the tails in the distribu-
tion. Dummynet drops fewer packets than NIST net for
this experiment, but with much more variable delays. Net-
Path delivers response times that are quite close to the hard-
ware reference point, with relatively low variability. For
higher data rates, NetPath delivers performance similar to
that shown in Figure 10, while the other two systems de-
grade further.

It appears that the more realistic packet arrival pro-
cess presented by Harpoon elicits somewhat different per-

5The bump in the NIST net curve is caused by interrupt coalescence.

formance from each system than with constant-bit rate
streams. While NetPath exhibits behavior nearly identical
to the SX-14 under CBR traffic, it performs somewhat dif-
ferently under this setup. Still, NetPath’s performance is far
superior to both NIST net and Dummynet. As future work,
we intend to examine NetPath’s behavior more closely to
further improve performance.

4. Conclusions

Experiments conducted in laboratory-based network re-
search testbed often require the capability to recreate char-
acteristics of the wide area Internet paths accurately. In
this paper, we described the design and implementation of
NetPath, a new tool that provides scalable, precise path em-
ulation capabilities. NetPath is based on the Click modu-
lar router platform and was developed by significantly ex-
tending the capabilities of the basic elements offered in the
Click software. In particular, we enable all of main mem-
ory to be used by NetPath, and provide auxiliary queuing
capability on disk. Our changes greatly improve the scala-
bility of the system.

Our evaluation of the performance of NetPath considers
throughput, ability to generate precise delays, and scala-
bility. We show with that NetPath, precise path emulation
for high throughput links is now possible using a software-
based system. NetPath provides throughput and precision
that are well beyond the capabilities of other software-
based network emulators and approach those of an expen-
sive hardware-based system. We also show that NetPath
can be effectively multiplexed to provide path emulation
across several links simultaneously.
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