#### Scalable Network Path Emulation

Shilpi Agarwal, Joel Sommers, Paul Barford University of Wisconsin-Madison <a href="http://wail.cs.wisc.edu">http://wail.cs.wisc.edu</a>

#### Internet testbeds

|            | simulation               | laboratory<br>emulation                                         | in situ                         |
|------------|--------------------------|-----------------------------------------------------------------|---------------------------------|
| strengths  | accessibility            | experimental<br>control;<br>system realism                      | realism<br>("it is what it is") |
| challenges | realism<br>(everything)  | realism of traffic,<br>topology, and<br>link/path<br>conditions | experimental<br>control         |
| examples   | ns-2, Opnet,<br>GloMoSim | WAIL, DETER,<br>Emulab                                          | Planetlab, RON                  |

# A taxonomy of emulation systems

#### network emulation

**ModelNet** 

packet delays, bandwidths, loss characteristics, assuming some topology

#### path emulation

Dummynet, NIST net

packet-oriented latency, loss, duplication, reordering

#### link emulation

bit-oriented propagation delay and errors

Adtech SX-14
A spool of optical fiber (!)

## Emulation challenges for today's testbeds

- Scale to many physical routers, links, and end hosts
  - Implies need for flexibility in configuration options
- Scale to Gigabit+ links
- Cost effectiveness (free software, commodity hardware)
- No existing software-based link or path emulator satisfies all these requirements

#### WAIL: an example of a modern testbed







- > 50 routers (hundreds of interfaces)
- > 200 workstations

# NetPath: a scalable network path emulator

- Foundations and design principles of NetPath
  - Modify Click modular router run on commodity hardware
  - Eliminate unnecessary packet processing
  - Push functionality as close to hardware as possible
  - Exploit hardware capabilities where possible
  - Support a variety of topological and network configurations

# NetPath with a single emulated path



receive and timestamp packets

buffer packets in system memory

delay packets for specified time; perform reordering and errors

decide how/where packet should be forwarded

transmit packet in egress interface

## NetPath with multiple emulated paths



# Exploiting system memory for high performance

- Basic Click elements do not enable full use of memory resources
  - Packets are dropped as a result
- NetPath provides new Click elements to take advantage of system resources
  - Use available system RAM BigQueue
  - Use disks as backing store for long delays DiskQueue
    - Use a pair of disks to hide disk access latency ODQM (opportunistic disk queue management)

## Options for topological configuration

Direct interposition

**—** 

- Layer 2 virtual interposition
  - Additional Click elements to optimize VLAN tag rewriting



- Layer 3 interposition via IP routing
  - Leverage existing Click configuration tools



#### Results overview

- Accuracy & precision of NetPath over a range of operating conditions is close to a hardware-based platform
  - NetPath significantly outperforms other emulation systems
- NetPath modifications to Click significantly improve performance over out-of-the-box Click elements
- NetPath can accurately & precisely support simultaneous emulation over several paths

#### Comparison with a hardware-based reference

| offered load<br>(kpps) | NetPath      | Adtech SX-14 |
|------------------------|--------------|--------------|
| 50                     | 10.03 (0.01) | 9.99 (0.00)  |
| 100                    | 10.03 (0.01) | 9.99 (0.00)  |
| 150                    | 10.04 (0.01) | 9.99 (0.00)  |
| 200                    | 10.05 (0.01) | 9.99 (0.00)  |
| 250                    | 10.06 (0.01) | 9.99 (0.00)  |
| 300                    | 10.09 (0.03) | 9.99 (0.00)  |

## Using available system RAM for packet buffers



Using available system RAM enables longer delays at higher packet rates.

# Accuracy of probabilistic delay emulation



NetPath can provide high accuracy, but head-of-line blocking can be a problem.

### Comparison of emulation systems

| offered load (Kpps) | NetPath         | NIST net        | Dummynet         | Modelnet        |
|---------------------|-----------------|-----------------|------------------|-----------------|
| 40                  | 10.04<br>(0.01) | 10.14<br>(0.03) | 10.00<br>(0.35)  | 10.06 (0.13)    |
| 80                  | 10.04 (0.01)    | 10.52<br>(0.40) | 10.23<br>(0.46)  | 10.10 (0.20)    |
| 120                 | 10.04 (0.01)    | 12.75<br>(0.84) | 29.08<br>(1.68)  | 10.56<br>(0.45) |
| 160                 | 10.04 (0.01)    | 16.47<br>(1.96) | 399.00<br>(3.50) | -failure-       |

## Packet drops are a problem with previous emulators



NetPath accurately emulates delay without introducing packet loss for much higher rates than other emulators.

#### Scaling to multiple paths



NetPath enables more efficient use of resources. Slight performance degradation is due to scheduling overhead.

#### Summary and conclusions

- NetPath provides accurate path emulation capabilities for modern laboratory testbeds
  - Suitable for analysis of delay-sensitive protocols
  - Scalability to multi-link scenarios means that laboratory resources can be more efficiently used
  - A variety of supported configuration scenarios means that NetPath can be used in a wide variety of lab settings
  - Software will be available at <a href="http://wail.cs.wisc.edu/">http://wail.cs.wisc.edu/</a>

#### the end

http://wail.cs.wisc.edu