
Self-Configuring Network Traffic Generation

Joel Sommers
University of Wisconsin–Madison

jsommers@cs.wisc.edu

Paul Barford
University of Wisconsin–Madison

pb@cs.wisc.edu

ABSTRACT
The ability to generate repeatable, realistic network traffic is
critical in both simulation and testbed environments. Traf-
fic generation capabilities to date have been limited to either
simple sequenced packet streams typically aimed at through-
put testing, or to application-specific tools focused on, for
example, recreating representative HTTP requests. In this
paper we describe Harpoon, a new application-independent
tool for generating representative packet traffic at the IP
flow level. Harpoon generates TCP and UDP packet flows
that have the same byte, packet, temporal and spatial char-
acteristics as measured at routers in live environments. Har-
poon is distinguished from other tools that generate statis-
tically representative traffic in that it can self-configure by
automatically extracting parameters from standard Netflow
logs or packet traces. We provide details on Harpoon’s ar-
chitecture and implementation, and validate its capabilities
in controlled laboratory experiments using configurations
derived from flow and packet traces gathered in live envi-
ronments. We then demonstrate Harpoon’s capabilities in
a router benchmarking experiment that compares Harpoon
with commonly used throughput test methods. Our results
show that the router subsystem load generated by Harpoon
is significantly different, suggesting that this kind of test can
provide important insights into how routers might behave
under actual operating conditions.

Categories and Subject Descriptors: C.2.6 [Computer-
Communication Networks]: Internetworking—Routers; C.4
[Performance of Systems]: Measurement techniques, Model-
ing techniques, Performance attributes

General Terms: Measurement, Performance

Keywords: Traffic Generation, Network Flows

1. INTRODUCTION
The network research community has a persistent need to

evaluate new algorithms, systems and protocols using tools
that (1) create a range of test conditions similar to those
experienced in live deployment and (2) ensure reproducible

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’04, October 25–27, 2004, Taormina, Sicily, Italy.
Copyright 2004 ACM 1-58113-821-0/04/0010 ...$5.00.

results [14, 30]. Having appropriate tools for generating scal-
able, tunable and representative network traffic is therefore
of fundamental importance. Such tools are critical in labo-
ratory test environments (such as [10, 11]) where they can
be used to evaluate behavior and performance of new sys-
tems and real networking hardware. They are also critical
in emulation environments (such as [48, 49]) and simulation
environments (such as [9, 12]) where representative back-
ground traffic is needed. Without the capability to consis-
tently create realistic network test conditions, new systems
run the risk of unpredictable behavior and unacceptable per-
formance when deployed in live environments.

Current best practices for traffic generation have focused
on either simple packet streams or recreation of a single
application-specific behavior. Packet streaming methods such
as those used in tools like iperf [6] consist of sequences of
packets separated by a constant interval. These methods
form the basis for standard router performance tests such as
those recommended in RFC 2544 [21] and RFC 2889 [40].
Another example is an infinite FTP source which is com-
monly used for traffic generation in simulations. While these
approaches provide some insight into network system capa-
bilities, they lack nearly all of the richness and diversity of
packet streams observed in the live Internet [32, 34, 44].

A number of successful application-specific workload gen-
erators have been developed including [13, 18, 37]. These
tools typically focus on generating application-level request
sequences that result in network traffic that has the same
statistical properties as live traffic from the modeled applica-
tion. While they are useful for evaluating the behavior and
performance of host systems (such as servers and caches),
these tools can be cumbersome for use in router or switch
tests and obviously only recreate one kind of application
traffic, not the diversity of traffic observed in the Internet.
These observations motivate the need for a tool capable of
generating a range of network traffic such as might be ob-
served either at the edges or core of the Internet.

The contribution of this paper is the description and eval-
uation of a new network traffic generator capable of recre-
ating IP traffic flows (where flow is defined as a series of
packets between a given IP/port pair using a specific trans-
port protocol - see Section 3 for more detail) representative
of those observed at routers in the Internet. We are aware of
no other tools that target representative traffic generation
at the IP flow level. Our approach is to abstract flow-level
traffic generation into a series of application-independent
file transfers that use either TCP or UDP for transport.
Our model also includes both temporal (diurnal effects as-

68

sociated with traffic volume) and spatial (vis-à-vis IP ad-
dress space coverage) components. The resulting construc-
tive model can be manually parameterized or can be self-
parameterized using Netflow [2] or packet trace data and
components of the traffic generation tool itself. The self-
parameterizing capability simplifies use and further distin-
guishes our system from other tools that attempt to generate
statistically representative traffic.

We realized this model in a tool we call Harpoon that
can be used in a router testbed environment or emulation
testbed environment to generate scalable, representative net-
work traffic. Harpoon has two components: client threads
that make file transfer requests and server threads that trans-
fer the requested files using either TCP or UDP. The result
is byte/packet/flow traffic at the first hop router (from the
perspective of the server) that is qualitatively the same as
the traffic used to produce input parameters.

We evaluated Harpoon’s capabilities in two ways. First,
we conducted experiments in a controlled laboratory en-
vironment using two different data sets to show that we
can qualitatively recreate the same traffic using Harpoon.
We used a one week data set of Netflow records collected
at a border router of the University of Wisconsin-Madison
and a series of packet traces (from which we constructed
flow records using a standard tool) collected at the border
of the University of Auckland. These experiments demon-
strate Harpoon’s capability to generate representative flow
level traffic. Next, we used the same laboratory environ-
ment to conduct a throughput evaluation of a Cisco 6509
switch/router following the testing protocol described in RFC
2889. We show that while throughputs achieved using stan-
dard packet streaming methods compared with Harpoon are
similar, the loads placed on router subsystems are substan-
tially different. The implication of this result is that a tool
like Harpoon can augment standard test suites to give both
router designers and network operators insight into system
behavior under actual operating conditions.

This paper is organized as follows. After discussing re-
lated work in §2, we describe the design requirements and
architecture of our flow-level workload model in §3. We
present the details of Harpoon’s implementation in §4 and
the results of the validation tests in §5. The results from
our throughput evaluation with Harpoon are given in §6.
We conclude and outline future work in §7.

2. RELATED WORK
There is a large literature on the general topics of In-

ternet traffic characterization and modeling. Some of the
most successful models of traffic focus on the correlation
structure (self-similarity) that appears over large time scales
in both local area [38] and wide area traffic [44]. Crov-
ella and Bestavros extend this work by showing evidence
that self-similarity in Web traffic arises from multiplexing
ON/OFF sources (as proposed in [50]) with heavy-tailed
file sizes transferred [26]. This observation forms the basis
of our constructive model for generation of IP flows.

Several flow-level network traffic models have been pro-
posed including [17, 22, 35]. These models have been used
to study fairness, response times, queue lengths and loss
probabilities under different assumptions and using a vari-
ety of mathematical techniques. Our work differs from these
in that we focus on building a flow-level model based on com-
bining empirical distributions of characteristics that can be

measured at a router in a live network. Our model can be
realized in a tool for generating representative packet traffic
in a live (or emulated) network environment or for creating
traffic in a simulation environment.

An approach similar to ours has been used in a number
of application-specific workload generators. In [18], the au-
thors describe the SURGE Web workload generator which
was built by combining distributional properties of Web
use. A similar approach was used in developing Web Poly-
graph [13] and GISMO [37] which are used to generate scal-
able, representative Web cache and streaming workloads re-
spectively. Harpoon differs from these tools in that it is
application independent, uses empirical distributions, gen-
erates both UDP and TCP traffic and includes both spatial
and temporal characteristics. It should also be noted that
there are several commercial products that target application-
specific workload generation including [8].

A model closely related to ours was introduced by Feld-
mann et al. in [28]. That model generalizes the SURGE
model for Web traffic for the purpose of general background
traffic generation in the ns-2 simulator. A similar model
based on connection-rate superposition was developed by
Cleveland et al. in [25]. Our model is more general in that
it has no Web-specific parameters, includes the capability to
transfer files via UDP and incorporates temporal and spa-
tial request characteristics. Uhlig presents a flow level traffic
model in [47] that is also similar to ours. That model, how-
ever, uses three parameters (compared with the eight that
we use) and does not rely on an underlying transport proto-
col to transfer individual files. Our work is also distinct from
each of these models in that we create and evaluate a tool
(Harpoon) that can be used for traffic generation on real
systems and that can be automatically parameterized from
flow records, thus requiring no additional modeling steps.

In contrast to workload generators based on models de-
signed to synthesize distributional characteristics are tools
that replay traffic based on raw packet traces. tcpreplay

and flowreplay [46], for example, take a very low-level ap-
proach by attempting to generate packets (while option-
ally rewriting IP addresses) that mirror the specific timings
recorded in a packet trace. Monkey-See Monkey-Do [23]
takes a slightly higher-level approach by extracting certain
features, such as estimated bottleneck bandwidth, delayed
ACK behavior, and receiver window from raw packet traces
in order to replay HTTP transactions in a test environment
while emulating original client protocol and network condi-
tions. The approach taken in Harpoon differs significantly
from these traffic generators. First, Harpoon is designed to
generate representative background traffic with scalability
and flexibility as fundamental objectives. It is unlikely that
tools mimicking network behavior at such a low level can
scale to high-speed links. Second, Harpoon uses source-level
traffic descriptions that do not make assumptions about the
transport layer, rather than packet-level descriptions based
on prior network state embedded in low-level timings [31].
Generating packet traffic based on network-induced timings
is problematic, especially with closed-loop protocols such
as TCP, where transient, context-dependent network condi-
tions can substantially alter individual packet timings.

3. ARCHITECTURE
The design objectives of Harpoon are (1) to scalably gen-

erate application-independent network traffic at the IP flow

69

level, and (2) to be easily parameterized to create traffic
that is statistically identical to traffic measured at a given
vantage point in the Internet. Figure 1 depicts a high-level
process flow of these objectives. We start with the basic
definition of an IP flow to create a constructive model for
network traffic generation which we describe below.

. . .

harpoon

harpoon
. . .

processing

flow record

capture and

emulation
testbed

operational
network

self

configuration

Figure 1: Flow records are collected at a given van-
tage point in an operational network using standard
software like flow-tools. Key aspects of the live
flows are extracted during a self-configuration step.
These parameters are used to generate traffic in a
testbed that statistically matches the temporal (di-
urnal) volume characteristics as well as the spatial
(source and destination IP address frequency) char-
acteristics of the live flows.

An IP flow as defined in [24] is a unidirectional series of IP
packets of a given protocol traveling between a source and
a destination IP/port pair within a certain period of time.
The final condition of this statement is ambiguous, so we
tie our definition to the tools we use to gather and analyze
network flow data: flow-tools [36] and FlowScan [45]. Net-
flow data includes source and destination AS/IP/port pairs,
packet and byte counts, flow start and end times, protocol
information, and a bitwise OR of TCP flags for all packets
of a flow, in addition to other fields. This data is exported
either on timer deadlines or when certain events occur (e.g.,
a TCP FIN or RST, or a cache becomes full), whichever
comes first. While this pragmatically resolves ambiguity in
the definition of a flow, specific expiration-related timing
behaviors can vary [7]. We discuss how this variation can
affect parameterization in Section 4. An example of how a
single transaction, such as an FTP transfer, can appear in
flow records is shown in Figure 2. The transaction is repre-
sented as multiple data flows between the two hosts. Each
direction of the control and data connections is reported,
resulting in four flow records. TCP flags, packet and byte
counts accumulate over the duration of each connection.

From this operational definition of a flow, Harpoon’s ar-
chitecture begins with the notion of unicast file transfers
using either TCP or UDP. Harpoon does not address the
packet level dynamics of TCP file transfers. Rather, it relies
on the version(s) of TCP running on end hosts to transfer the
requested file. Modeling UDP traffic is complicated by the
fact that packet emission behaviors are largely application-
specific. At present, Harpoon contains three models of UDP
packet transfer: a simple parameterized constant packet
rate, a fixed-interval periodic ping-pong, and an exponen-
tially distributed ping-pong. The first source type is similar
to some audio and video streams, while the latter two types
are intended to mimic the standard Network Time Proto-
col (NTP) and Domain Name Service (DNS), respectively.
UDP traffic in today’s Internet is likely to be made up of

a wider variety of application level traffic (including voice,
SQL worms, etc.) whose behavior is not captured in our
three source types. Development of a model with a more
diverse set of UDP traffic sources is left for future work.

time

24 pkts, 1202 bytes

24 pkts, 4208 bytes

250 pkts, 359424 bytes

132 pkts, 5288 bytes

Server.21 (ftp)Client.1291
SYN|ACK|PUSH|FIN

Client.1291 Server.21 (ftp)
SYN|ACK|PUSH|FIN

Client.1292 Server.20 (ftp−data)
SYN|ACK|PUSH|FIN

Server.20 (ftp−data)Client.1292
SYN|ACK|FIN

Figure 2: Flow level decomposition of a simple FTP
transaction. Each line is logged as a separate entry
by NetFlow.

The Harpoon flow model is a two level architecture and
is depicted in Figure 3. We refer to the lower level of the
Harpoon model as the connection level. It is made up of two
components that have measurable distributional properties.
The first component is the size of the file transferred, and the
second component is the time interval between consecutive
file transfer requests, the inter-connection time. Harpoon
makes requests for files with sizes drawn from an empiri-
cal distribution PFileSize. Connection initiations are sepa-
rated by time intervals drawn from an empirical distribution
PInterConnection.

The upper level of the Harpoon model is referred to as
the session level. Harpoon sessions are divided into either
TCP or UDP types which then conduct data transfers us-
ing that protocol during the time that they are active. The
session level has two components: the number of active ses-
sions and the IP spatial distribution. By modulating the
number of sessions that are active at any point in time, Har-
poon can match the byte, packet, and flow volumes from the
original data and realize the temporal (diurnal) traffic vol-
umes that are a common characteristic of the Internet [43].
The average number of sessions of each type (TCP/UDP)
that are active at any point in a day is derived from a flow
data time series for consecutive non-overlapping intervals
of length IntervalDuration seconds to create an empirical
model for PActiveSessions. Scalability is naturally achieved
by dividing the number of active sessions across any number
of hosts comprising the testbed. For each session, Harpoon
picks source and destination addresses from ranges of avail-
able addresses to make a series of file transfer requests. The
address selection is made preferentially using weights drawn
from empirical distributions PIPRangesrc and PIPRangedest .
A series of file transfer requests then takes place between
the source and destination for IntervalDuration seconds.
When Harpoon is started, it begins with the average num-
ber of sessions in the first interval and proceeds through
consecutive intervals for the duration of the test.

In summary, the Harpoon model is made up of a combina-
tion of five distributional models for TCP sessions: file size,
inter-connection time, source and destination IP ranges, and
number of active sessions. These parameters are summa-
rized in Table 1. There are three distributional models for
UDP sessions: constant bit-rate, periodic ping-pong, and

70

is modulated to achieve

number of active sessions

source and destination addresses

are assigned to active sessions to

obtain desired spatial distribution

desired volumes

�
�
�

�
�
�

�
�
�

�
�
�

� �
� �
� �

� �
� �
� �

��
��
�

��
��
�

� �� �� �� �� �

	 		 		 		 		 	

� �� �� �� �� �

<IP source, IP dest, protocol,

to canonical five−tuple flows:

connections are analogous

sessions are analogous to

canonical three−tuples:

<IP source, IP dest, protocol>

inter−connection times

..
.

individual filessource port, dest port>

blocks represent

A B

session level

connection level

Figure 3: Harpoon’s flow-based two-level hierarchi-
cal traffic model. Sessions are comprised of a series
of connections separated by durations drawn from
the inter-connection time distribution. Source and
destination IP address selection (A and B in the
figure) is weighted to match the frequency distribu-
tion of the original flow data. The number of active
sessions determines the overall average load offered
by Harpoon. A heavy-tailed empirical file size dis-
tribution and an ON/OFF transfer model generate
self-similar packet-level behavior.

exponential ping-pong. Each of these distributions can be
specified manually or extracted from packet traces or Net-
flow data collected at a live router. These models enable the
workload generated by Harpoon to be application indepen-
dent or to be tuned to a specific application. The models
are combined in a constructive manner to create a series of
file transfer requests that results in representative flow-level
network traffic.

4. IMPLEMENTATION
A key feature of Harpoon is that it is self-configuring.

Netflow logs or packet traces are used for parameterization
without any intermediate modeling step, obviating the need
for Harpoon users to become experts in distribution and
parametric estimation. In this section, we first discuss the
relevant implementation issues and limitations in transform-
ing flow records into a suitable configuration for Harpoon.
We follow with a description of the implementation of the
traffic generation component of Harpoon.

4.1 Self-Configuration
The self-configuration phase of Harpoon takes flow records

as input and generates the necessary parameters for traffic
generation. The key parameters are distributional estimates
of (1) file sizes, (2) inter-connection times, (3) source and
destination IP addresses, (4) and the number of active ses-
sions. We divide the input flow records into a series of in-
tervals of equal duration to generate the number of active
sessions in order to match average byte, packet, and flow vol-
umes of the original data over each interval. We also discuss
below how the interval duration, a configurable parameter,
is set. For each parameter, we use the empirical distribu-
tion derived from the original flow or packet data and do not
attempt fitting to a known distribution (although Harpoon
could be trivially enhanced to generate variates from known
distributions).

File Sizes Flow records contain packet and byte counts, so
a first approximation of file sizes (flow payload sizes) can be
extracted by ByteCount−PacketCount∗40 (assuming no IP
or TCP options). To this calculation we make the following

refinements. First, due to flow record timeouts, a single
flow may be split into multiple flow records. To counter
this effect, we perform “flow surgery” [27] on the raw flow
records, coalescing records where addresses, ports, protocol,
timestamps and TCP flags indicate that the records refer to
the same flow. Second, we only perform the calculation if
there are start and end markers present in the TCP flags,
i.e., a SYN flag and a RST or FIN flag. This check ensures
that we do not underestimate application payloads because
of missing the beginning or end of a flow. Third, we discard
flows that appear to be “ACK flows” or flows that are very
small (e.g., the request direction for an HTTP transfer).

There are two practical complications to calculating file
sizes from flow records. First, some routers do not record
TCP flags in flow records. In this implementation of Har-
poon, we assume that these flags are available. Also, it is
common practice on high-bandwidth links to perform packet
sampling (e.g., by recording every Nth packet or recording
a packet with probability 1

N
) to reduce the storage and pro-

cessing requirements of maintaining flow records. Duffield
et al. [27] describe methods for recovering the distribution
of flow sizes from sampled flow records. Application of these
methods to the self-configuration step of Harpoon and relax-
ing assumptions regarding presence of TCP flags are areas
for future work.

Inter-connection Times To extract the inter-connection time
distribution, we again make use of TCP flags in the flow
records. For each source and destination IP address pair en-
countered, we create an ordered list of start times for flows
that contain a SYN flag. The collection of differences be-
tween consecutive SYNs for each address pair constitutes
the inter-connection time empirical distribution. In practice,
we impose a bound on the maximum inter-connection time
(e.g., 60 seconds). We discuss implications of this bound
below.

Source and Destination IP Addresses To emulate the spa-
tial characteristics present in flow records captured in a live
environment, we first extract the empirical frequency distri-
butions of source and destination IP addresses. We map the
resulting rank-frequency distributions onto source and des-
tination address pools (from the perspective of a Harpoon
client) used in the testbed. For example, if the source ad-
dress pool for a testbed host is specified as a class C network,
we map the frequency distribution of the top 2541 addresses
from the live flows to Harpoon configuration parameters.

Number of Active Sessions One way to calculate the num-
ber of sessions that should be active over a series of intervals
is to start with the observation that each source and desti-
nation IP address pair (the analog of a session in Harpoon)
contributes to the overall load during one or more intervals.
For each host pair, we find the earliest flow start time and
latest end time and “spread” a value proportional to the
lifetime of that session over the corresponding intervals.

While the above technique appears to be the most direct
way of calculating the number of active sessions, it fails be-
cause the end timestamp of flow records frequently does not
reflect the precise time of the final packet of a flow. The
inaccurate timestamps extend flow durations and therefore
cause the number of sessions that should be active over a
series of time intervals to be overestimated. This inflation

1256 addresses in a full class C minus host address (.0) minus
broadcast address (.255) equals 254 usable addresses.

71

Table 1: Summary of Harpoon configuration parameters for TCP sources.
Parameter Description

PF ileSize Empirical distribution of file sizes transferred.
PInterConnection Empirical distribution of time between consecutive TCP connections initiated by an

IP source-destination pair.
PIP Rangesrc and Ranges of IP addresses with preferential weights set to match the empirical frequency
PIP Rangedest

distributions from the original data.

PActiveSessions The distribution of the average number of sessions (IP source-destination pairs) active
during consecutive intervals of the measured data. By modulating this distribution, Harpoon can
match the temporal byte, packet and flow volumes from the original data.

IntervalDuration Time granularity over which Harpoon matches average byte, packet and flow volumes.

Table 2: Summary statistics of differences (in mil-
liseconds) between Netflow timestamps from a Cisco
6509 and flow records generated from a DAG 3.5
packet trace.

timestamp mean median standard
deviation

flow begin 19 0 8
flow end 454 461 254

could cause the byte, packet and flow volumes generated by
Harpoon to exceed the original volumes. The inaccuracy
in the end timestamp may be caused by delays from wait-
ing until a flow export packet or cache fills, or by lingering
out-of-order packets2 [7]. In contrast, flow start timestamps
appear to accurately reflect the first packet of a flow (al-
lowing us to use them in calculating the inter-connection
times).

To quantify the timing inaccuracies introduced by Net-
flow, we generated traffic through a Cisco 6509, capturing
Netflow records from the router and simultaneously tak-
ing a packet trace using a high precision DAG 3.5 capture
card3 [4]. Table 2 shows the sample mean, median, and stan-
dard deviation for begin and end timestamp differences in
milliseconds. While most differences in the begin timestamp
are zero (note the median) and otherwise quite small, dif-
ferences in the end timestamp are, on average, significantly
larger. These end timestamp differences, when compounded
over several thousand flows per minute (see Figure 8(c), for
example) cause our initial algorithm to fail. On the other
hand, using flow records constructed from raw packet traces
with accurate timestamps leads to a good match. Results for
the Auckland trace, described in Section 5, were generated
in this way.

The revised approach we take for tuning the number of ac-
tive sessions is outlined in the pseudocode shown in Figure 4.
We first make the assumption that, in the overwhelming ma-
jority of cases, a file request made during interval Ij is also
completed during interval Ij . This assumption is reasonable
based on relatively large values for IntervalDuration, such
as 300 or 600 seconds, and a reasonable bound on round-
trip times. We determine how many sessions are required to
generate the required byte volume over the duration of an

2There are also inaccuracies that are related to the coarse-
grained nature of flow records. Since we subtract contribu-
tions of headers (including connection setup and teardown
packets and associated latency) to file sizes, we would really
like the start and end timestamps to reflect the first and
final payload packets of a flow.
3The DAG capture point was situated one hop after the
6509. Differences in timestamps due to propagation and
forwarding delays were assumed to be negligible.

interval by mimicking the action of Harpoon sessions as they
alternate between waiting for an amount of time drawn from
the PInterConnection distribution and requesting files whose
sizes are drawn from the PFileSize distribution4. We succes-
sively increment the number of sessions, imitating the action
of each session and noting when we surpass the requisite byte
volume for the given interval.

In practice, we run the algorithm for each interval N
times, using the mean number of sessions required to gener-
ate the necessary volume. As shown in the validation exper-
iments of Harpoon, tuning the number of active sessions to
the required byte volume using the technique we outline here
leads to an accurate match with the original byte, packet,
and flow volumes over relatively coarse intervals.

BytesGenerated = 0 # Total bytes generated by mimicked
sessions.

SessionsRequired = 0 # Sessions required to create the
intended volume.

while BytesGenerated < IntendedByteVolume: # We want to generate at least as many
bytes that were originally sent.

SessionsRequired += 1 # One more session is required...

ElapsedTime = 0 # ElapsedTime holds amount of time the
current session has been active
during this interval.

while ElapsedTime < IntervalDuration: # This loop mimics the action
of a single session.

ElapsedTime += InterConnectionTimes.next() # Get the next inter-connection
time from the empirical distribution.

BytesGenerated += FileSizes.next() # Get the next file size from
the empirical distribution (and
assume the file is transferred
in the current interval).

end while
end while

The number of sessions needed to generate required byte volume is
now stored in the variable SessionsRequired.

Figure 4: Pseudocode for algorithm used to de-
termine the number of sessions that should be ac-
tive over a given interval to produce a certain byte
volume. Intended byte volume, IntervalDuration,
PFileSize and PInterConnection distributions are given
as inputs to the algorithm.

Interval Duration The value IntervalDuration is the time
granularity over which we match byte, packet, and flow vol-
umes between the originally measured flow data and Har-
poon. The duration can be selected somewhat arbitrar-
ily, but there are two practical constraints. First, since we
choose a source and destination address for each active ses-
sion at the start of each interval, there is a tradeoff between

4Note that the connection initiation schedule defined by the
PInterConnection distribution is made independent of net-
work feedback.

72

the length of an interval and how well the spatial distri-
bution can be approximated over the course of a full test.
With longer intervals, there is less opportunity for sampling
each spatial distribution. With shorter intervals, there is
an increased internal overhead from managing sessions and
timers. In our experience, intervals such as five minutes
work well. Five minutes also happens to be a common inter-
val over which flow records are aggregated (as implemented
by the widely used flow-tools [36]). The second practical
consideration is that IntervalDuration should be at least
as long as the maximum inter-connection time. One reason
is that a session may randomly get an inter-connection time
that causes it to be idle for the entire interval. Another
reason is that at the end of an interval, there may be some
sessions that are waiting for an inter-connection time to ex-
pire before initiating a connection – we do not prematurely
halt sessions at the end of an interval to ensure sampling the
longest inter-connection times. The sessions that are wait-
ing for the next connection time at the end of an interval
are technically active but not engaged in file transfers and
count against the target number of active sessions for the
new interval. The effect of these temporarily frozen sessions
is that Harpoon may not generate the intended volumes for
every interval after the first. Setting IntervalDuration to
a large enough value along with setting an appropriate cap
on the maximum inter-connection time when processing the
original flow data resolves this potential problem.

The value IntervalDuration is used during parameteri-
zation for determining the PActiveSessions distribution and
is also used to control traffic generation. The values used
for each phase need not be the same. This decoupling en-
ables time compression (or expansion) relative to the orig-
inal data during traffic generation. Harpoon can either be
set to match the aggregate volume of the original intervals
or to match the bitrate. For example, if N TCP sessions are
measured from flow logs in interval Ij and M TCP sessions
are measured in interval Ij+1, Harpoon could be configured
to initiate N + M sessions over a test interval Ik to real-
ize similar aggregate volume. To match the original bitrate,
the traffic generation IntervalDuration is simply set to a
smaller value than the duration used for parameterization.
However, there is a potential pitfall when matching bitrates
by using a shorter traffic generation IntervalDuration. If
the interval is too short, there may be insufficient sampling
of the PInterConnection and PFileSize distributions with the
configured number of active sessions. The result is that the
byte and packet volumes generated over the interval may
vary far from the expected value.

While it is true that our use of rather coarse intervals for
matching original volumes tends to ignore issues of packet
arrivals over short (sub-RTT) time scales, this is intentional.
Additional testbed parameters could have been required with
a Harpoon setup (such as a distribution of round-trip times,
link capacities, MTUs, etc.) to match parameters derived
from a live trace, but at this point we do not specify such
configurations. Creating the necessary volumes over longer
time scales to produce self-similarity and diurnal patterns in
a way that real application traffic is generated is the intent
and domain of Harpoon. We believe it is preferable to allow
burstiness over short time scales to arise endogenously from
TCP closed-loop control and network state, rather than to
exogenously attempt to force such state (e.g., by introduc-
ing a random packet dropping element along a path to effect

a certain loss rate). We demonstrate limitations of Harpoon
with respect to short time scales in Section 5.3.

4.2 Traffic Generation
Harpoon is implemented as a client-server application.

Figure 5 illustrates the conceptual aspects of the implemen-
tation. A Harpoon client process consists of threads that
generate file requests. The hierarchical session/connection
model is realized by individual threads, and the distribution
for active sessions maps to a number of threads actively mak-
ing file requests. In each thread, connections are initiated
according to the inter-connection time distribution. The du-
ration of any file transfer is dictated by the dynamics of the
transport protocol and the underlying testbed configuration.
Inter-connection times, on the other hand, are followed in-
dependently of the transport layer so an active session may
be multiplexing multiple concurrent connections. A Har-
poon server process consists of threads that service Harpoon
client requests. The server controls the sizes of files trans-
ferred according to the input distribution.

emulation
. . .

testbed

support functions
additional

logging, statistics,

O
th

er
 p

lu
g

in
s

b
it

ra
te

 g
en

er
at

o
r

U
D

P
 c

o
n

st
an

t

g
en

er
at

o
r

T
C

P
 t

ra
ff

ic

management
remote

XML/RPC
. . .

. . .

thread/session manager

harpoon software architecture

self
configuration

Figure 5: Harpoon software architecture. A
core session manager controls dynamically loadable
traffic generator plugin modules and through an
XML/RPC interface indirectly handles remote re-
quests to stop or start plugins, load new configura-
tions, or retrieve plugin statistics.

While TCP file transfers are controlled by protocol dy-
namics, UDP dictates no control over packet emissions. Cur-
rently, Harpoon can send UDP datagrams at roughly con-
stant bit rates (configurable, but by default 10kbps), at fixed
intervals, and at exponentially distributed intervals. Param-
eters used for these traffic sources in our tests are summa-
rized in Table 3. Unlike the constant bit rate source type,
the latter two UDP source types have no notion of multi-
packet files or inter-connection times; all “files” consist of
a single datagram whose size depends on file size distribu-
tions for each source type. As such, fixed interval and ex-
ponentially distributed interval sources do not require any
control messages to coordinate when packets are sent. The
same is not true for the constant bit rate sources, where we
must ensure that file requests take place according to the file
size and inter-connection request distributions. Each client
maintains a TCP control connection with the target server
over the duration of an active UDP session. File requests
are made over this channel and UDP data is then sent by
the server. The client sends the port number of a locally
bound UDP socket in order for the server to set the proper
destination of UDP traffic. The client additionally sends
a datagram size and rate for the server to use when send-
ing data, and a unique request identifier. Once the server
finishes sending the requested file, it sends a completion in-
dication to the client for the original request identifier.

In addition to the distributional input parameters, each

73

Table 3: Summary of Harpoon configuration param-
eters for UDP sources used in validation tests.

Source Type Key Parameter

Constant Packet Rate Rate = 10kbps
Fixed-interval Periodic Ping-Pong Interval = 64 seconds
Exponentially Distributed Ping-Pong λ = 30 milliseconds

Harpoon client is given a range of local IPv4 addresses to use
as a source address pool, and a range of IPv4 addresses and
associated ports of target Harpoon servers. Address ranges
are specified as CIDR prefixes to Harpoon. The source ad-
dresses may be bound to physical interfaces on the client
host or to address aliases assigned to an interface. When
starting a new user, a thread picks a source address and
destination address from this pool. The address pools are
constructed in such a way that random selection of addresses
generates the required spatial frequency distribution.

Harpoon is designed in a modular fashion to enable rel-
atively easy addition of new traffic models. Traffic genera-
tion modules for TCP, UDP constant bit-rate stream, and
the fixed and exponential interval UDP datagram sources
are implemented as plugin modules that are dynamically
loaded and controlled by a core Harpoon thread manager.
Harpoon reads XML parameter files produced by the self-
configuration components, loading and starting the neces-
sary plugin modules.

Management of resources and tools within large-scale test-
bed environments can be challenging. To counter this prob-
lem we implemented an HTTP server in Harpoon, along
with an XML parser to enable remote management via XML-
RPC [15]. Users can remotely reset, stop, and gather statis-
tics from running Harpoon processes. Traffic module object
files can be disseminated to remote Harpoon processes and
configured by distributing XML parameter files from a cen-
tral location.

Currently, a single Harpoon process can produce a few
hundreds of megabits per second of network traffic using rea-
sonably provisioned commodity workstations. Performance
is largely dependent on the nature of the inter-connection
time distribution (because of timer management) and the
number of active sessions. The memory footprint of Har-
poon (client or server) is relatively small, normally less than
10MB with modestly sized input distributions. The code
is written in C++ and currently compiles and runs under
FreeBSD, Linux, MacOS X, and Solaris. Porting to new
platforms is limited only by support for POSIX threads, ca-
pability for dynamic loading of objects (e.g., dlopen() and
friends), the C++ standard template library, and the eXpat
XML library[5].

5. VALIDATION
In this section we validate the ability of Harpoon to gen-

erate traffic that qualitatively exhibits the same statistical
signatures as the distributional models used as input.

We used two different data sets to self-parameterize Har-
poon in our validation tests. Our first data set consisted
of one week of Netflow records collected between July 31,
2002 and August 6, 2002. The second data set was a se-
ries of packet traces from the University of Auckland, taken
on June 11 and 12, 2001, from which we constructed flow
records. We modified the crl flow tool in the CoralReef
software suite [3] to produce wire-format Netflow version 5

records from the packet traces. We refer to these data sets
as “Wisconsin” and “Auckland” below, and they are sum-
marized in Table 4.

Table 4: Summary of Data Sets Used in Validation
Experiments
Data Set Total Flows TCP Flows

Wisconsin 31 July–6 August 2002 423,836,790 241,484,962
Auckland 11–12 June 2001 12,912,462 12,144,434

5.1 Tests
Our validation test environment consisted of two work-

stations running the FreeBSD 5.1 operating system. Each
machine had 2 GHz Intel Pentium 4 processors, 1 Giga-
byte of RAM, and used kernel defaults for TCP/IP param-
eters, which meant that the NewReno congestion control
algorithm, time stamping, and window scaling TCP options
were enabled, and the default receive window size was 64kB.
The default Ethernet MTU of 1500 bytes was used. Each
machine was dual-homed, with a separate Intel Pro/1000
interface used solely for experiments. The machines were
each connected to a Cisco 6509 router via 1 Gbps Ethernet.

One FreeBSD machine was used as Harpoon data server
and two were used as Harpoon clients for generating requests
and receiving the resulting data packets. We monitored each
host during our tests to ensure the systems did not exhaust
all available CPU or memory resources.

The client machines were configured to generate requests
using an IPv4 class C address space (28 addresses). Like-
wise, the server machine was configured to handle requests
to an IPv4 class C address space. In each case, the address
creation was accomplished by creating aliases of the loop-
back interface, and creating static routes at the Harpoon
clients, server and intermediate switch. Aliases of the loop-
back adapter were created to avoid ARP overhead with the
switch.

5.2 Results
Figures 6 and 9 examine Harpoon’s capability to gen-

erate the desired temporal characteristics for the Wiscon-
sin and Auckland data sets, respectively. Figure 6 com-
pares the bitrate over a period of 8 hours from the original
Wisconsin data with Harpoon. Figure 9 compares the bi-
trate over a period of two days of the original Auckland
data with the bitrates produced by Harpoon when emu-
lating the same time period. The level of traffic is deter-
mined by the input distribution specifying the number of
active users (PActiveSessions). In each test, the Harpoon
traffic exhibits burstiness due to the distribution of file sizes,
inter-connection times, and the closed-loop nature of TCP.
Nonetheless, over the duration of each test the hourly pat-
tern emerges due to control over the number of active ses-
sions at the Harpoon client process. Some variability is in-
troduced because Harpoon does not immediately truncate
an active session at each emulation interval. Instead, it lets
the final connection finish naturally, thus avoiding abrupt
shifts between each interval.

Figure 7 compares the inter-connection time, file size,
and destination frequency empirical distributions derived
from the Wisconsin data set with the distributions gener-
ated by Harpoon. For inter-connection times, shown in Fig-
ure 7(a), there is a good overall match except at the shortest

74

18Mbps

14Mbps

10Mbps

7pm5pm3pm1pm31 July ’02, 11am

th
ro

ug
hp

ut
 (

bi
ts

 p
er

 s
ec

on
d)

emulated hour

Measured Data
Harpoon

Figure 6: Emulation of temporal volume character-
istics for Wisconsin data.

inter-connection times. The visible “bumps” for the Har-
poon tests at these inter-connection times are an effect of a
coarse-grained operating system scheduler interacting with
the shortest durations of this distribution. FreeBSD (as well
as Linux), by default, uses time slices of 10 milliseconds and
the steps in Figure 7(a) are at multiples of this time slice. In
tests with operating systems that have different scheduling
mechanisms (e.g., MacOS X), these particular artifacts do
not appear. Results for the Auckland data set are qualita-
tively similar.

Figure 7(b) compares file sizes extracted from the Wis-
consin data set with the file sizes transferred by Harpoon.
There is a close qualitative match, and results for the Auck-
land data set are similar.

Figure 7(c) plots frequency vs. rank on a log-log scale
for destination addresses for the Wisconsin data set. We
observe a close match between the original data and the
Harpoon data. Results for source addresses are qualitatively
similar, as are results for the Auckland data set.

Our final validation test was to compare the traffic vol-
umes generated by Harpoon against the original flow traces
used to generate parameters for each data set. In Figure 8
we compare the distributions of packets, bytes, and flows per
measurement interval to those derived from the Wisconsin
data set. We make the same comparisons for the Auckland
data set in Figure 10. As shown in these plots, Harpoon
accurately approximates the number of bytes and flows per
interval. For each data set, there are more packets sent in
the original trace than from Harpoon. The reason is that
our testbed is homogeneous with respect to link-layer max-
imum transmission unit sizes, resulting in average packet
sizes that are larger than the original trace. Figure 11(a)
shows a time series of the mean packet size over 60 second
intervals of a one hour segment (12pm-1pm, 11 June 2001)
of the Auckland data set and a similar time series for Har-
poon. Harpoon packet sizes average almost twice as large
as the original trace. As shown in Figures 8(b) and 10(b),
when we scale the Harpoon volumes by the ratio of average
packet sizes between Harpoon and the measured data, we
observe a close match.

5.3 Limitations
Two limitations to Harpoon’s traffic model are:

1. it is designed to match byte, packet, and flow volumes
over relatively coarse intervals (e.g., 300 seconds) and
may not match over shorter intervals;

2. since packet-level dynamics are not specified, traffic
produced by Harpoon may not match other metrics of

interest, such as scaling characteristics, queue length
distribution for the first-hop router, packet loss pro-
cess, and flow durations.

Packet-level dynamics created by Harpoon arise from the
file size distribution, the inter-connection time distribution,
TCP implementations on end hosts, and testbed parameters
such as round-trip time distribution, link capacities, and
MTU sizes. Round-trip time is a key parameter because it
affects flow durations for TCP sources. As a consequence,
the nature of the ON/OFF process and therefore the corre-
lation structure of packet arrivals over both short and long
time scales are affected. It was shown in [29] that dynamics
over short time scales differ between LAN and WAN environ-
ments, and in [28] that short time scale effects arise due to
the TCP feedback loop and network environment variabil-
ity characteristic of WANs. Effects across both short and
long time scales are of interest in testbed traffic generation
because performance measurements can differ substantially
between LAN and WAN settings (e.g., see [19]).

In Figure 11(b) we compare time series of bytes trans-
ferred over 1 second intervals between a segment of the
Auckland trace and Harpoon using an IntervalDuration
of 300 seconds. There is no propagation delay emulated in
the testbed, so the round-trip time for Harpoon sources is on
the order of 1 millisecond. There is greater variability evi-
dent in the testbed configuration, in part, from a tight TCP
feedback loop resulting in higher throughput and shorter
flow durations. For the Auckland trace, dominant round-
trip times of around 200 milliseconds (roughly the RTT to
North America) lead to longer flow durations, a greater de-
gree in flow concurrency, and less observable variability in
utilization.

A standard method of characterizing behavior of traffic
dynamics over a range of time scales is the log-scale diagram
described in [16]. The log-scale diagram was developed as
a means for identifying self-similar scaling in network traf-
fic and for estimating the Hurst parameter. Evidence for
self-similar scaling is associated with a range of scales where
there exists a particular linear relationship between scale
and the log of a normalized measure of energy (variabil-
ity). A different scaling regime has been shown to exist in
measured WAN traffic and is separated from the linear self-
similar region by a pronounced dip in energy at the time
scale associated with dominant round-trip times.

In Figure 11(c) we compare log-scale diagrams based on
wavelet decompositions of the time series of byte volumes
over 500 microsecond intervals for a one hour segment of
the Auckland data set (12pm-1pm, 11 June 2001) and for
Harpoon with two different values of IntervalDuration (60
or 300 seconds) and two emulated round-trip times (0 or 200
milliseconds). (We do not plot confidence intervals for clar-
ity.) We first note the difference between Harpoon config-
urations using different round-trip times. Comparing Har-
poon using an RTT of 200 milliseconds with the original
trace, there is a common range of time scales indicative of
self-similar scaling (scales 9-14) and a clear dip at the 256
millisecond time scale (scale 9) because of dominant round-
trip times in the original trace, and the singular round-trip
time for Harpoon. For the Harpoon configurations with no
emulated propagation delay, there is more energy across al-
most all time scales and nothing in common with the orig-
inal trace. Finally, we note that over sub-RTT time scales,
Harpoon does not match the Auckland trace for any configu-

75

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.0001 0.001 0.01 0.1 1 10 100 1000

cd
f

inter-connection time (seconds) (log)

Measured Data
Harpoon

(a) Inter-connection time distribution.

 0

 0.2

 0.4

 0.6

 0.8

 1

100MB10MB1MB100kB10kB1kB100

cd
f

file size (bytes) (log)

Measured Data
Harpoon

(b) File size distribution.

 0.0001

 0.001

 0.01

 0.1

 1 10 100 1000

re
la

tiv
e

fr
eq

ue
nc

y
(lo

g)

destination popularity rank (log)

Measured Data
Harpoon

(c) Destination IP address frequency distri-
bution.

Figure 7: Comparison of empirical distributions extracted from Wisconsin data with distributions produced
during Harpoon emulation. Results shown for one day of Wisconsin data (31 July 2002). Results for other
days and for the Auckland data are qualitatively similar.

 0

 0.2

 0.4

 0.6

 0.8

 1

1.5B1B0.5B

cd
f

bytes transferred per 10 minute interval (billions)

Measured Data
Harpoon

(a) Byte volumes.

 0

 0.2

 0.4

 0.6

 0.8

 1

3M2.5M2M1.5M1M0.5M

cd
f

packets transferred per 10 minute interval (millions)

Measured Data
Harpoon

Harpoon - Scaled

(b) Packet volumes. Harpoon data also
shown scaled by ratio of average packet size
between Harpoon and measured data.

 0

 0.2

 0.4

 0.6

 0.8

 1

180000160000140000120000100000

cd
f

flow arrivals per 10 minute interval

Measured Data
Harpoon

(c) Flow volumes.

Figure 8: Comparison of byte, packet, and flow volumes extracted from of Wisconsin data with volumes
produced during Harpoon emulation. Results shown for one day of Wisconsin data (31 July 2002). Results
for other days are qualitatively similar.

5Mbps

4Mbps

3Mbps

2Mbps

1Mbps

0Mbps
12am8pm4pm12pm8am4am12 June, 12am8pm4pm12pm8am4am11 June ’01, 12am

th
ro

ug
hp

ut
 (b

its
 p

er
 s

ec
on

d)

emulated hour

Measured Data
Harpoon

Figure 9: Emulation of temporal volume characteristics for Auckland data.

 0

 0.2

 0.4

 0.6

 0.8

 1

1.5B1B0.5B

cd
f

bytes transferred per 1 hour interval (billions)

Measured Data
Harpoon

(a) Byte volumes.

 0

 0.2

 0.4

 0.6

 0.8

 1

2.5M2M1.5M1M0.5M

cd
f

packet transferred per 1 hour interval (millions)

Measured Data
Harpoon

Harpoon - Scaled

(b) Packet volumes. Harpoon data also
shown scaled by ratio of average packet size
between Harpoon and measured data.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000

cd
f

flow arrivals per 1 hour interval

Measured Data
Harpoon

(c) Flow volumes.

Figure 10: Comparison of byte, packet, and flow volumes extracted from original Auckland data with volumes
produced during Harpoon emulation.

76

ration. Since our testbed lacks diversity in round-trip times
(as well as MTUs and link capacities), we do not expect a
match over these time scales. Even though Harpoon accu-
rately approximates the original volumes over 300 second
intervals for both round-trip time values (not shown here),
there are vast differences between the original correlation
structure and that produced by Harpoon.

Comparing the two configurations of IntervalDuration,
there is slightly less overall energy when using 60 second
intervals because the byte volumes produced by Harpoon
are less than the original volumes. The reason is that the
interval is too small compared with the default maximum
inter-connection time of 60 seconds: a session may randomly
get an inter-connection time that causes it to be idle for the
length of the entire interval. The end effect is that Harpoon
produces less traffic than intended (see also Section 4).

These differences have important implications not only for
Harpoon, but in configuring any laboratory testbed and in
the interpretation of results. First, it is clear that queuing
dynamics will be different depending (at least) on configured
round-trip times, resulting in different delay, jitter, and loss
characteristics than might have been measured in a live en-
vironment. Second, such differences will very likely affect
transport and application performance, requiring careful in-
terpretation of measurements, and characterization of their
applicability outside the laboratory. While we feel that Har-
poon represents a step forward in testbed traffic generation,
the goal of predicting performance in a live environment
based on laboratory experiments remains somewhat out of
reach, since specifying the ingredients necessary to produce
realistic packet dynamics over all time scales in both simu-
lation and laboratory testbeds is, in general, an open prob-
lem [42].

6. COMPARISON WITH PACKET-ORIENTED
TRAFFIC GENERATORS

The most obvious application for Harpoon is in scalable
background traffic generation for testbed environments such
as Emulab [49] and WAIL [11]. In this section we investigate
another application of Harpoon in a router benchmarking
environment. We compare router performance using work-
loads generated by Harpoon with workloads generated by a
standard packet level traffic generator5. Our motivation for
comparing Harpoon with a standard traffic generation sys-
tem is to both demonstrate the differences between the two
approaches, and to consider how the standard tools might
be tuned to exercise routers more comprehensively.

6.1 Environment and Methodology
For the hardware environment used in this series of exper-

iments we used the two Harpoon source machines and one
Harpoon sink machine configured in the same way as our
validation tests described above. Each host was connected
to a Cisco 6509 router6 [1] via 1 Gbps Ethernet links. Each
link was connected to separate physical line cards on the
6509, forcing traffic to cross the internal switching fabric of

5Standard packet generation tool range from free software
tools such as iperf [6] to large-scale, feature-rich hardware
platforms such as the Spirent AX/4000 [8].
6The Cisco 6500 series of devices can be configured either
to run Cisco CatOS, Cisco IOS, or a hybrid of the two.
The choice depends on anticipated traffic, customer require-
ments, and modules installed. We configured our 6509 to
run native IOS, version 12.1(13)E6.

the router. During tests, the 6509 was connected only to
the traffic generation machines and to our management net-
work, over which we polled specific MIB variables via SNMP.
No other traffic traversed the router. The system we used to
generate the standard packet traffic was a Spirent AX/4000.
The AX/4000 generated traffic over two 1 Gbps Ethernet
links and the traffic returned to the AX/4000 over another
1 Gbps link. While our tests contrast Harpoon with the
AX/4000, the model of traffic generation in the AX/4000 is
representative of many tools that generate packets with con-
stant spacing. We therefore use the term “constant spacing
packet generator” in the discussion and graphs of results.

Our experiments were based on a series of tests described
at www.lightreading.com [41] and on benchmarking ter-
minology and methods described in RFCs 2285 [39] and
2889 [40]. These tests were designed to evaluate packet for-
warding performance of Internet backbone routers under a
variety of conditions, including the use of minimum-sized
packets, and forwarding tables comparable in size to those
found in the Internet backbone. The LightReading tests also
investigated many other performance capabilities of routers,
such as BGP table capacity, packet filtering, and forward-
ing performance under unstable path conditions. Our tests
focused on packet forwarding performance and the impact
of workloads on router subsystems.

Our basic metric for comparison was packet forwarding
rate. As RFC 2285 points out, it is problematic to report
forwarding rates in the absence of packet losses as the ear-
lier RFC 1242 [20] had defined. Obviously, packet loss rates
depend on the offered load and router or switch implementa-
tion artifacts. Our challenge was to determine how to match
offered loads between two fundamentally different packet
generation methods. Instead of attempting to compare for-
warding rates across a broad range of offered loads, we chose
two different regimes, a “low” load and a “high” load. With
each offered load, we polled the 6509 every 20 seconds using
SNMP to obtain the forwarding rate, packet loss counts and
other system utilization variables available via SNMP on
each interface. SNMP variables are updated internally every
10 seconds in the 6509. Our polling period of 20 seconds was
chosen to minimize additional load placed on the 6509 while
ensuring each SNMP request would obtain updated coun-
ters. The low and high offered load regimes were roughly
tuned to 60% (≈ 600Mbps) of egress bandwidth and 90% (≈
900Mbps) of egress bandwidth, respectively7. For Harpoon,
we used the PFileSize and PInterConnection distributions ex-
tracted from the Wisconsin data and used the algorithm of
Figure 4 to determine how many session threads should be
active to generate the intended load levels on the 6509. We
then calculated the average offered load from SNMP mea-
surements of the ingress interfaces and used this average to
configure the packet-level generator. Because of this tun-
ing approach, including other application-level generators
in this evaluation would have required imprecise trial-and-
error tests to tune them to the same level. Thus, we chose
only to compare Harpoon with the constant load generator.
For all tests described in this section, Harpoon was initial-
ized with the same random number generator seed to ensure
identical sequences in input distributions.

7With a deterministic packet generation tool like the
AX/4000, tuning the offered load is straightforward. With
Harpoon, the load is tuned by adjusting the number of client
and server threads.

77

 200

 400

 600

 800

 1000

 1200

 1400

 0 500 1000 1500 2000 2500 3000 3500

av
er

ag
e

pa
ck

et
 s

iz
e

(b
yt

es
) o

ve
r 6

0
se

c
in

te
rv

al
s

time (seconds)

Auckland - Mean Packet Size
Harpoon - Mean Packet Size

(a) Average packet sizes for one hour seg-
ment of Auckland data and equivalent Har-
poon trace. For the Auckland data, the
overall sample mean and standard deviation
are 610 and 629, respectively. For Harpoon,
the overall sample mean and standard devi-
ation are 1106 and 615, respectively.

2M

1.5M

1M

0.5M

0
 0 20 40 60 80 100 120 140 160 180

by
te

s
tr

an
sf

er
re

d
pe

r
1

se
co

nd
 in

te
rv

al
 (

m
ill

io
ns

)

time (seconds)

Measured Data
Harpoon

(b) Time series of bytes transferred for
a 300 second segment of Auckland trace
and for Harpoon (no RTT configured in
testbed).

 18

 20

 22

 24

 26

 28

 30

 2 4 6 8 10 12 14 16 18

65.53616.3844.0961.0240.2560.0640.0160.0040.001

lo
g2

(e
ne

rg
y)

scalefine coarse

Measured Data
Harpoon - 60 sec ID - 0 msec RTT
Harpoon 300 sec ID - 0 msec RTT

Harpoon - 60 sec ID - 200 msec RTT
Harpoon - 300 sec ID - 200 msec RTT

(c) Log-scale diagrams for one hour seg-
ment of Auckland data set (12pm-1pm, 11
June 2001) and Harpoon with two different
IntervalDuration (ID) values and two dif-
ferent round-trip times.

Figure 11: Limitations of Harpoon related to packet volumes generated, and to matching original volumes
over a range of time scales.

We compared forwarding rates in a series of tests run for
10 minutes each using the two different offered loads while
separately changing traffic source burstiness, traffic source
packet size, and forwarding table size. Note that changes in
traffic source burstiness and packet size are only applicable
to the constant spacing generator; Harpoon (intentionally)
does not dictate these parameters8. Packet-level burstiness
in Harpoon arises from the distributional parameters con-
figured in Harpoon and the closed-loop dynamics of TCP.

For the constant spacing generator, we used burst sizes
of 1 (uniformly spaced packets), 232, 465, 697, and 930.
The burst size is defined by RFC 2285 [39] as a sequence
of frames emitted with the minimum legal inter-frame gap,
and a maximum recommended burst size is given as 930.
The range of burst sizes we used covers 1

4
, 1

2
, and 3

4
of the

maximum burst size.
The packet sizes (number of bytes excluding link-layer

framing) used in the constant spacing generator were 40,
1500, and a trimodal distribution configured so that 61% of
the generated packets were 40 bytes, 17% were 576 bytes,
and 22% were 1500 bytes. The empirical basis for this mix
of packet sizes roughly approximates the values used in the
LightReading tests, and comes from measurements taken
at Merit Networks Inc. between 28 August, 2000 and 13
September, 2000 [33].

The sizes of forwarding tables used were 32, 1,024, 32,768,
or 65,536 entries. The two traffic sources (two server work-
stations in Harpoon configuration, two separate GE cards
in the AX/4000) were each configured with a single IP ad-
dress. The traffic sink (one client workstation in Harpoon,
a single GE card in the AX/4000) was configured to use
an entire IPv4 class B address range (216 addresses). With
the AX/4000, this is simply a parameter in configuring the
generated packets. With Harpoon, we created 216 interface
aliases. This address space was reached by installing static
routes on the traffic source workstations and the forwarding
tables on the 6509. We aliased the loopback adapter rather
than the physical Ethernet adapter to avoid ARP overhead

8It is possible to change the MTU at each interface (physi-
cal or alias) used by Harpoon, indirectly allowing Harpoon
to generate different packet sizes. We did not modify the
default Ethernet MTU of 1500 bytes on the FreeBSD hosts
running Harpoon.

between the client host and the 6509, and to force a desti-
nation address lookup in the forwarding tables of the 6509.

6.2 Results
We begin by showing a qualitative comparison of the time

series of bit forwarding rates for Harpoon and the constant
spacing generator shown in Figure 12(a). In this test, Har-
poon was configured to generate roughly 600Mbps of traffic
over a 30 minute test period. The constant spacing genera-
tor was configured to match the average offered load of Har-
poon and emitted 1500 byte packets with uniform spacing.
Harpoon maintains a high level of offered load in the pres-
ence of variable file sizes transferred and inter-connection
times while still generating burstiness in packet traffic. As
expected, the constant spacing generator presents a virtu-
ally unwavering load to the router. In further tests, we ex-
plore how these fundamental differences in packet emission
processes affect the performance of the router.

We examine the effects of burst sizes of 1, 465, 697, and
930 on forwarding rate in the results shown in Figure 12(b).
The vertical bars on each data point indicate the range of
one standard deviation above and below the average. The
router was configured with a forwarding table size of 215

and the high regime of offered load was used for these tests.
Harpoon results for a forwarding table size of 215 and high
offered load are shown for comparison. The drop in bit for-
warding rate for the constant spacing generator at a burst
size of 697 accompanies a corresponding increase in the num-
ber of packets dropped at the egress line card of the router.
The drop in forwarding rate between a burst size of 465 and
a burst size of 930 is roughly 180 Mbps. This increase in
stress placed on the router does not come with an increase
in forwarding rate variability, as noted by the low variation
in the height of vertical bars drawn for the constant spacing
generator tests.

Figure 12(c) shows the effects of different packet sizes on
forwarding performance. The constant spacing generator
was configured to emit packet sizes of 40, 1500, and a tri-
modal distribution as described above. As with the burst
tests above, the router was configured with a forwarding
table size of 215 and the high regime of offered load was
used for these tests. Harpoon results for a forwarding table
size of 215 and high offered load are plotted for comparison.

78

With minimum sized IPv4 packets, the forwarding rate of
the test router under the same offered load drops by roughly
140Mbps while exhibiting very low variability. Packet loss
was measured for the 40 byte case, but there was no packet
loss measured for the 1500 byte or trimodal case.

Figure 13 shows the affect of different forwarding table
sizes on forwarding rates. The results from the low offered
load test are shown in Figure 13(a) and results from high
offered load test are shown in Figure 13(b). The obvious
features in the figures are the near-perfect matching of aver-
age bit forwarding rates between Harpoon and the constant
packet spacing generator at low loads, and the poor match
for the test using a high offered load. Recall that the offered
load used in the constant packet spacing tool was configured
using the average offered load generated by Harpoon. For
the high load test shown in Figure 13(b), the difference in
forwarding rate comes as a direct result of packet loss that
occurred during the Harpoon tests, but not during the tests
using the constant spacing generator. Though the same av-
erage load is offered to the router by each traffic generator,
the forwarding rate is clearly lower for the Harpoon test.
Another important feature of these graphs is the trend in
variance for the Harpoon tests. As the forwarding table size
increases, so does the variance in bit forwarding rate. For
the constant packet spacing generator, variance remains very
low for all tests. Since Harpoon was configured so that each
test used the same sequence of input parameters, we con-
clude that the burstiness in the traffic presented by Harpoon
results in distinctly different and potentially highly variable
forwarding performance at the router.

Figure 14(a) shows time series of packet loss for selected
tests described above. All tests shown used a 215-entry for-
warding table at the router and high offered load. It is clear
from Figure 14(a) that even when the constant spacing gen-
erator emits bursts of packets, the loss rate measured at
the router remains basically constant. The same is true for
the constant spacing generator test with 40 byte packets.
This observation is not surprising considering the packet-
level generator operates in an open-loop, making no adjust-
ment in offered load in response to packet loss. Because
of the closed-loop nature of TCP, Harpoon is likely to gen-
erate some packet loss with almost any configured offered
load, and it is likely that these losses will be correlated and
bursty [51]. Finally, we note that all packet losses measured
during our tests occurred as output buffer drops on the line
card connected to the Harpoon client machine or the module
on the packet-level generator acting as the data sink.

The effect of four test configurations on switch fabric uti-
lization is shown in Figure 14(b)9. Surprisingly, the results
for the constant spacing generator using uniformly spaced
1500 byte packets exhibits a wider range of fabric utilization
levels than for the same generator using uniformly spaced 40
byte packets. The fluctuation in utilization measured dur-
ing the 1500 byte test is likely due to limited precision of
the utilization calculation internal to the 6509 (it is simply
an integer). The highest level of switch fabric utilization
is measured during the constant packet spacing generator
test using 40 byte packets. It is interesting to note that de-

9Switch fabric utilization on the 6509 is reported for both
input and output channels to each module installed in the
chassis. We show results for the output channel on the mod-
ule where traffic is multiplexed on the path to the Harpoon
client machine or packet-level generator data sink module.

spite sending much larger packets on average and despite a
much lower packet loss rate (see Figure 14(a)), utilization
during the Harpoon test comes within two percent of the
highest measured fabric utilization. Fabric utilization dur-
ing the Harpoon test also exhibits much greater variability
than any of the constant spacing generator tests.

While not shown here, we ran experiments using the con-
stant spacing generator and a limited cross-product of pa-
rameters explored above (burst size, packet size, forwarding
table size, and offered load). As one might expect, loss rates
when sending 40 byte packets in bursts are greater than
when sending uniformly spaced 40 byte packets. The key
observation from all these tests is that variability in bit for-
warding rate, loss rate, and switch fabric utilization remains
very low for the constant spacing generator.

6.3 Implications
It is clear that precisely controlled traffic streams are use-

ful for Internet RFC conformance testing and for subjecting
network systems to extreme conditions along certain dimen-
sions. However, our experiments demonstrate that a work-
load based on measured characteristics of real Internet traf-
fic generates a fundamentally different and more variable
load on routers. Our results suggest ranges of behaviors
that can be expected for given average loads. These ranges
could be used to tune constant bit rate streams to explore an
appropriate operational space. Finally, the subsystem load
variability imposed by Harpoon should provide insights to
system designers on the stresses that these systems might
be subjected to under real operating conditions. This could
inform the allocation of resources in future system designs.

7. CONCLUSIONS AND FUTURE WORK
Harpoon is a new tool for generating representative IP

traffic based on eight distributional characteristics of TCP
and UDP flows. Parameters for these distributions can be
automatically extracted from NetFlow data collected from
a live router. These characteristics enable Harpoon to gen-
erate statistically representative traffic workloads that are
independent of any specific application. We are not aware of
any other workload generation tool with this capability. We
implemented Harpoon as a client-server application that can
be used in testbed environments. We parameterized Har-
poon using data collected from a NetFlow trace and from
a set of packet traces and verified in controlled laboratory
tests that Harpoon generates traffic that is qualitatively the
same as the input data.

We demonstrated Harpoon’s utility beyond simple back-
ground traffic generation through a series of throughput
tests conducted on a Cisco 6509 router. We compared and
contrasted the workload generated by Harpoon with the con-
stant bit rate workloads recommended for standard tests.
We found that Harpoon generated similar results for overall
throughput, but that the stresses placed on router subsys-
tems by Harpoon during these tests were significantly dif-
ferent. These results suggest that (in addition to the back-
ground traffic generation) Harpoon could be useful as a tool
for providing network hardware designers and network oper-
ators insight into how systems might behave under realistic
traffic conditions.

An area for future work is to extend our parameterization
tools and model to accommodate sampled flow records and
the absence of TCP flags. We also intend to augment the
UDP traffic model to enable a broader set of UDP traffic

79

800Mbps

600Mbps

400Mbps
 0 300 600 900 1200 1500 1800

av
g

bi
ts

 p
er

 s
ec

on
d

(b
ps

)

time (seconds)

Harpoon
Constant Spacing Generator

(a) Packet forwarding rate time series for
Harpoon and the constant spacing packet
generator.

1Gbps

800Mbps

600Mbps

9306974651

fo
rw

ar
di

ng
 ra

te
 (b

its
 p

er
 s

ec
on

d)

burst size (packets)

Harpoon
Constant Spacing Generator

(b) Average forwarding rates using differ-
ent burst sizes for the constant spacing traf-
fic generator. Configuration is 215 entries
in forwarding table and high offered load.
Harpoon results for 215 forwarding table en-
tries and high offered load shown for com-
parison. Vertical bars span one standard
deviation above and below the mean.

1Gbps

800Mbps

600Mbps

40 bytemultiple1500 byte

fo
rw

ar
di

ng
 ra

te
 (b

its
 p

er
 s

ec
on

d)

generated packet sizes

Harpoon
Constant Spacing Generator

(c) Average forwarding rates using differ-
ent packet sizes for constant spacing packet
generator. Configuration is 215 entries
in forwarding table and high offered load.
Harpoon results for 215 forwarding table en-
tries and high offered load shown for com-
parison. Vertical bars span one standard
deviation above and below the mean.

Figure 12: Qualitative contrast of forwarding rates between Harpoon and the constant spacing traffic gener-
ator, and comparisons of forwarding rates between Harpoon and the constant spacing traffic generator using
different burst lengths and packet sizes.

1Gbps

800Mbps

600Mbps

6553632768102432

fo
rw

ar
di

ng
 ra

te
 (b

its
 p

er
 s

ec
on

d)

routing table size

Harpoon
Constant Spacing Generator

(a) Low Offered Load

1Gbps

800Mbps

600Mbps

6553632768102432

fo
rw

ar
di

ng
 ra

te
 (b

its
 p

er
 s

ec
on

d)

routing table size

Harpoon
Constant Spacing Generator

(b) High Offered Load

Figure 13: Average forwarding rates for Harpoon and the constant spacing traffic generator for different
router forwarding table sizes. Vertical bars span one standard deviation above and below the mean.

characteristics. Finally, Harpoon assumes all sources are
well behaved, which is far from the case in the Internet. We
intend to pursue creation of traffic anomaly models that can
be incorporated into the Harpoon framework.

8. ACKNOWLEDGMENTS
Thanks to Dave Plonka at the University of Wisconsin for

helpful discussions regarding Netflow, and to Spirent Com-
munications for use of the AX/4000 system. We also thank
the anonymous reviewers and our shepherd, Anja Feldmann,
for constructive criticism.

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 0335234 and by
support from Cisco Systems. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the National Science Foundation or Cisco Systems.

9. REFERENCES
[1] Catalyst 6500 series switches. http://www.cisco.com/univer-

cd/cc/td/doc/product/lan/cat6000/index.htm. Accessed
August 2004.

[2] Cisco’s IOS Netflow feature.
http://www.cisco.com/warp/public/732/netflow. Accessed
August 2004.

[3] CoralReef: Passive network traffic monitoring and statistics
collection. http://www.caida.org/tools/measurement/coralreef.
Accessed August 2004.

[4] Endace measurement systems. http://www.endace.com/.
Accessed August 2004.

[5] The eXpat XML parser. http://expat.sourceforge.net. Accessed
August 2004.

[6] The iperf TCP/UDP Bandwidth Measurement Tool.
http://dast.nlanr.net/Projects/Iperf. Accessed August 2004.

[7] Netflow services solutions guide (Netflow white paper).
http://www.cisco.com/univercd/cc/td/doc/cisintwk/-
intsolns/netflsol/nfwhite.htm. Accessed August
2004.

[8] Spirent Communications Inc. Adtech AX/4000 broadband test
system. http://www.spirentcom.com/analysis/pro-
duct line.cfm?pl=1&WS=173&wt=2. Accessed August
2004.

[9] SSFnet network simulator. http://www.ssfnet.org. Accessed
August 2004.

[10] The University of New Hampshire Interoperability Laboratory.
http://www.iol.unh.edu. Accessed August 2004.

[11] The Wisconsin Advanced Internet Laboratory.
http://wail.cs.wisc.edu. Accessed August 2004.

[12] UCB/LBNL/VINT Network Simulator - ns (version 2).
http://www.isi.edu/nsnam/ns. Accessed August 2004.

[13] Web polygraph. http://www.web-polygraph.org. Accessed
August 2004.

[14] Workshop on models, methods and tools for reproducible
network research. http://www.acm.org/sigs/-
sigcomm/sigcomm2003/workshop/mometools, 2003.

[15] XML-RPC home page. http://www.xmlrpc.org. Accessed
August 2004.

[16] P. Abry and D. Veitch. Wavelet analysis of long range
dependent traffic. IEEE Transactions on Information Theory,
44(1):2–15, 1998.

80

 0

 5

 10

 15

 20

 25

 0 60 120 180 240 300
pa

ck
et

 lo
ss

 ra
te

 (%
)

time (seconds)

Harpoon
Constant Spacing Generator (1500 byte packets)

Constant Spacing Generator (697 pkt bursts)
Constant Spacing Generator (40 byte packets)

(a) Packet Loss Rate

 0

 5

 10

 15

 20

 25

 0 60 120 180 240 300

sw
itc

h
fa

br
ic

 u
til

iz
at

io
n

(%
)

time (seconds)

Harpoon
Constant Spacing Generator (1500 byte packets)

Constant Spacing Generator (697 pkt bursts)
Constant Spacing Generator (40 byte packets)

(b) Output Channel Fabric Utilization

Figure 14: Packet loss rates and switch fabric utilization using 215 forwarding table entries and high offered
load. Results shown for Harpoon, constant spacing generator with uniformly spaced packets of 1500 bytes,
bursts of 697 packets of 1500 bytes, and uniformly spaced packets of 40 bytes.

[17] C. Barakat, P. Thiran, G. Iannaccone, C. Diot, and
P. Owezarski. Modeling Internet backbone traffic at the flow
level. IEEE Transactions on Signal Processing (Special Issue
on Networking), August 2003.

[18] P. Barford and M. Crovella. Generating representative
workloads for network and server performance evaluation. In
Proceedings of ACM SIGMETRICS ’98, pages 151–160,
Madison, WI, June 1998.

[19] P. Barford and M. Crovella. A performance evaluation of hyper
text transfer protocols. In Proceedings of ACM SIGMETRICS
’99, Atlanta, GA, May 1999.

[20] S. Bradner. Benchmarking terminology for network
interconnect devices. IETF RFC 1242, July 1991.

[21] S. Bradner and J. McQuaid. Benchmarking methodology for
network interconnect devices. IETF RFC 2544, March 1999.

[22] T. Bu and D. Towsley. Fixed point approximation for TCP
behavior in an AQM network. In Proceedings of ACM
SIGMETRICS ’01, San Diego, CA, June 2001.

[23] Y.-C. Cheng, U. Hölzle, N. Cardwell, S. Savage, and G. M.
Voelker. Monkey see, monkey do: A tool for TCP tracing and
replaying. In Proceedings of the USENIX 2004 Conference,
June 2004.

[24] K. Claffy, G. Polyzos, and H.-W. Braun. Internet traffic flow
profiling. Technical Report TR-CS93-328, University of
California San Diego, November 1989.

[25] W. Cleveland, D. Lin, and D.Sun. IP packet generation:
Statistical models for TCP start times based on connection rate
superposition. In Proceedings of ACM SIGMETRICS ’00,
Santa Clara, CA, June 2000.

[26] M. Crovella and A. Bestavros. Self-similarity in World Wide
Web traffic: Evidence and possible causes. IEEE/ACM
Transactions on Networking, 5(6):835–846, December 1997.

[27] N. Duffield, C. Lund, and M. Thorup. Estimating flow
distributions from sampled flow statistics. In Proceedings of
ACM SIGCOMM ’03, Karlsruhe, Germany, August 2003.

[28] A. Feldmann, A. Gilbert, P. Huang, and W. Willinger.
Dynamics of IP traffic: A study of the role of variability and
the impact of control. In Proceedings of ACM SIGCOMM ’99,
Boston, MA, August 1999.

[29] A. Feldmann, A. Gilbert, and W. Willinger. Data networks as
cascades: Investigating the multifractal nature of Internet WAN
traffic. In Proceedings of ACM SIGCOMM ’98, August 1998.

[30] S. Floyd and E. Kohler. Internet research needs better models.
In Hotnets-I, Princeton, NJ, October 2002.

[31] S. Floyd and V. Paxson. Difficulties in simulating the Internet.
IEEE/ACM Transactions on Networking, 9(4), August 2001.

[32] M. Fomenkov, K. Keys, D. Moore, and K. Claffy. Longitudinal
study of Internet traffic from 1998-2001: a view from 20 high
performance sites. Technical report, Cooperative Association
for Internet Data Analysis (CAIDA), 2002.

[33] N. L. for Applied Network Research.
http://moat.nlanr.net/Datacube. Accessed August 2004.

[34] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll,
R. Rockell, T. Seely, and C. Diot. Packet-level traffic
measurements from the Sprint IP backbone. IEEE Network,
2003.

[35] S. Fredj, T. Bonald, A. Proutiere, G. Regnie, and J. Roberts.
Statistical bandwidth sharing: A study of congestion at flow

level. In Proceedings of ACM SIGCOMM ’01, San Diego, CA,
August 2001.

[36] M. Fullmer and S. Romig. The OSU flow-tools package and
Cisco NetFlow logs. In Proceedings of the USENIX Fourteenth
System Administration Conference LISA XIV, New Orleans,
LA, December 2000.

[37] S. Jin and A. Bestavros. GISMO: Generator of Streaming
Media Objects and Workloads. Performance Evaluation
Review, 29(3), 2001.

[38] W. Leland, M. Taqqu, W. Willinger, and D. Wilson. On the
self-similar nature of Ethernet traffic (extended version).
IEEE/ACM Transactions on Networking, pages 2:1–15, 1994.

[39] R. Mandeville. Benchmarking terminology for LAN switching
devices. IETF RFC 2285, February 1998.

[40] R. Mandeville and J. Perser. Benchmarking methodology for
LAN switching devices. IETF RFC 2889, August 2000.

[41] D. Newman, G. Chagnot, and J. Perser. Internet core router
test. http://www.lightreading.com/document.asp?site=test-
ing&doc id=4009, March 2001. Accessed August
2004.

[42] K. Park and W. Willinger. Self-Similar Network Traffic and
Performance Evaluation. Wiley Interscience, 2000.

[43] V. Paxson. Measurements and Analysis of End-to-End
Internet Dynamics. PhD thesis, University of California
Berkeley, 1997.

[44] V. Paxson and S. Floyd. Wide-area traffic: The failure of
poisson modeling. IEEE/ACM Transactions on Networking,
3(3):226–244, June 1995.

[45] D. Plonka. Flowscan: A network traffic flow reporting and
visualization tool. In Proceedings of the USENIX Fourteenth
System Administration Conference LISA XIV, New Orleans,
LA, December 2000.

[46] A. Turner. tcpreplay. http://tcpreplay.sourceforge.net/.
Accessed August 2004.

[47] S. Uhlig. Simulating interdomain traffic at the flow level.
Technical Report Infonet-TR-2001-11, University of Namur,
Institut d’ Informatique, 2001.

[48] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic,
J. Chase, and D. Becker. Scalability and accuracy in a
large-scale network emulator. In Proceedings of 5th Symposium
on Operating Systems Design and Implementation (OSDI),
Boston, MA, December 2002.

[49] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
integrated experimental environment for distributed systems
and networks. In Proceedings of 5th Symposium on Operating
Systems Design and Implementation (OSDI), Boston, MA,
December 2002.

[50] W. Willinger, M. Taqqu, R. Sherman, and D. Wilson.
Self-similarity through high-variability: Statistical analysis of
Ethernet LAN traffic at the source level. IEEE/ACM
Transactions on Networking, 5(1):71–86, February 1997.

[51] M. Yajnik, S. Moon, J. Kurose, and D. Towsley. Measurement
and modeling of temporal dependence in packet loss. In
Proceedings of IEEE INFOCOM ’99, New York, NY, March
1999.

81

