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Motivation

eService level agreements (SLAs) specify performance
guarantees made by Internet service providers.

e Example metrics: packet loss, delay, delay variation.

e Accurate and robust SLA compliance monitoring is
important for service providers and their customers.

e | ightweight, effective monitoring is a key challenge.
¢ Measurement on a single path.

e Network-wide monitoring.

e Non-compliance can have serious conseguences!
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Service Level Agreements

¢ Performance guarantees made by
providers to customers.

e £.g., customer buys VPN service, wants
guarantee of good service.

¢ Metrics: packet loss, delay, delay
variation, network availabillity.

e Specific to origin-destination sites (e.q.,
delay between A and C versus B and C).

e Different statistics used, e.g., mean, 95
percentile, maximum.

¢ Metrics typically averaged over long time
periods.
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SLA Monitoring Challenges

eQverhead of simultaneous active measurement of
multiple metrics is problematic.

*|n-network characteristics are difficult to accurately
measure with packet probes.

eCoordination and overhead of network-wide
measurements.

eData management.

eCollection, processing, storing and archiving,
coping with measurement errors, filtering
outliers, ...
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Approach

*Multi-objective probing: simultaneous measurement
of multiple performance objectives.

¢ Reduce overhead, simplify the measurement process.

*New and more accurate/robust active methodologies
for measuring delay, loss, and delay variation

* A new methodology for estimating mean end-to-end delay.
e Based on Simpson’s method for numerical integration.

* A new methodology for estimating quantiles of the delay
distribution.

e No assumptions made about nature of the underlying distribution.
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Approach (2)

* A new methodology for inferring an upper bound on the
distribution of delay for an unmeasured path, given
measurements for other, related paths in the network.

e Extends algebraic approaches of prior work to distributions.

* A new heuristic for measurement of packet loss rate based
on the badabing probe process [SBDRO05].

e Badabing originally designed to measure aspects of congestion
episodes, not loss rate.

* A new methodology for more robust measurement of delay
variation (jitter) on an end-to-end path.

¢ A qualitative assessment of congestion, analogous to RTP.
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Multi-objective probing

e Assume estimation algorithms operate in discrete
time.

* Probes may be scheduled to be sent at same time slot.

¢ [ag probes according to the estimator module to which
they apply.
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Implementation

e Discrete-time scheduler core.

e Modular probe algorithms
register with scheduler.

e Module contains all logic to
implement specific measurement
algorithm.

¢ Modules receive callbacks from
scheduler, send probes through

scheduler. ]ll_l_“l_l_>

Probes tagged according
to the estimation module.
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Methodology: Mean Delay

*Model delay as a continuous function f{(t).

eSimpson’s method for numerical integration is a
natural approach for estimating the mean of f().

e, b are the endpoints, and c is the midpoint of interval /;

S(F(ag) + F07) + 47 (e5) + ¢

oAt time slot /, choose value k from geometric
distribution with parameter p.

e Send probes at time slot /, i+(k+1), i+2(k+1).
e Apply Simpson’s method to measured probe delays.
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Methodology: Delay Quantiles

eEstimate quantiles using delay samples from probes.

ol et {x;: 1,...,n} be n samples drawn from distribution F.
e et Qp denote the p™" quantile, the solution to F(Qp) = p.

oxx < X IS the event that at least k samples are less than
or equal to x; Pr[xx < Qo] = G(n,p, k).
e\Nant: level X*(n,p,€) such that Q, is guaranteed to
exceed it with some small probabillity €.
e Use K*(n,p, €), the 1-€t" quantile of the binomial B distribution.

e Similar formulation for the lower bound K (n,p, €).

¢ Bounds can be calculated exactly using binomial distribution.
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Methodology: Distribution Inference

e Consider scalar additive metrics (e.qg.,

delay, log transmission probability) Q %@

¢ Given a subset of performance

measures across intersecting paths,
is it possible to infer the whole set of %@

measures?
e Chen et al. (SIGCOMM 2004) and Chua =
et al. INFOCOM 2005) examined

roblem for scalar measures.
P Vi+Vya=Yyo+y3

e \What about inferring a distribution of (e.g., yi's are measured
performance measures from a mean delays.)

subset?
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Methodology: Distribution Inference

Yi+Ys=Yo+ Y3
— (e.q., Yi’'s are distributions
of one-way delays.)
*R is the set of routes forming routing matrix A.

e [here is a minimal set of paths S € R s.t. every row
of A can be expressed as a linear combination of S.

e Partition S in S- and S+ based on sign of coefficient in the
linear combination: Y7 = Yo + Y3 - Y4, St ={2,3}; Si7 = {4}

e Can formulate the convolution problem in terms of these
partitions.

¢ The distributions are discretized prior to convolution.

e Our results provide a lower bound on the quantiles (upper bound on CDF).
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Methodology: Loss Rate

eStart with badabing loss probe stream for measuring
frequency and duration characteristics of loss
episodes.

* Probe pairs, sent according to a geometric distribution.

e Each probe consists of three packets, sent back-to-back.

e Heuristic: loss rate measured by badabing during a loss
episode is related to what a typical TCP flow might
measure.
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Methodology: Delay Variation

eConsider a stream of probes of length k.
¢s;; denotes difference in send time between probes J,j

or;j denotes difference in receive time between probes i,/

eConstruct a matrix M where element j,j contains the
ratio sij/rij:
es;i/rij = 1 if spacing does not change.
es;i/rij> 1 if spacing increases.
es;i/rij< 1 if spacing decreases.

es;i/rij= 0 if either probe is lost.
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Methodology: Delay Variation

eCompute eigenvalues of matrix M.
e Results in vector e of eigenvalues, sorted large to small.

e|f all ratios are 1, largest eigenvalue is k (stream length).

¢ Denote this “expected” vector of eigenvalues as e’.

e Subtract e’ from e, taking the L7 norm of the resulting
vector. k
Z le; — el
1=1

eResult Is called DV matrix metric.

e A gualitative assessment of the amount of distortion from
what we expect.
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Experiments

eCreated tool called SLAm (SLA monitor).
eEvaluated in controlled laboratory environment.

e Two topologies: dumbbell and star.

eCompare SLAmM with RFC standard probe streams at
same bitrate.
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Results: Bandwidth Savings

hree probe algorithms operating simultaneously.
¢ 5 millisecond discrete time interval.

_0Ss probe: pioss = 0.3, 600 byte packets.

Delay probe: pgeiay = 0.048, 100 byte packets.

Delay variation periodic probe: 30 millisecond interval, 48
byte packets.

eSavings is parameter dependent, and can be big.

Delay
Variation

489 Kb/s | 20 Kb/s | 60 Kb/s | 569 Kb/s | 470 Kb/s | 99 Kb/s (17 %)

jsommers@colgate.edu | SLA compliance monitoring

Loss Delay Sum SLAM Savings



mailto:jsommers@cs.wisc.edu
mailto:jsommers@cs.wisc.edu

Results: Delay

eResults for SLAmM are closer to true value than

standard Poisson-based stream (RFC 2679).

e Fast convergence to true mean delay (in paper).
SLAM

Results for
self-similar
background
traffic generated
using Harpoon.

mean delay
comparison

RFC 2679

true

estimate

true

estimate

dumblbell (60%)

0.006

0.006

0.007

0.009

dumbbell (75%)

0.014

0.014

0.006

0.013

star: route 1

0.007

0.006

0.007

0.005

star: route 2

0.009

0.008

0.009

0.006

star: route 3

0.005

0.005

0.005

0.004

star: route 4

0.007

0.006

0.007

0.004
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Results: Delay Quantiles

eCalculated quantiles with 90% confidence interval.

e|ntervals generally include true quantile, with few
exceptions.

¢ For all traffic scenarios used, in both dumbbell and star

topologies. 2] e, ine
e

© @ _
o o

Results for CBR in star
topology (left) and long- . °
lived TCP in dumbbell  ~ < <

topology (right). ° °

©
o

N N
o o

F'.'..'
LT
4 — true delay e — true delay
g . —— SLAm estimate, with 90% c.i. o I —— SLAm estimate, with 90% c.i.

o
| | | | | I | | | | |
000 0.02 004 006 0.08 0.10 0.030 0.035 0.040 0.045 0.05(

jsommers@colgate.edu | SLA compliance monitoring delay (seconds)

19

delay (seconds)


mailto:jsommers@cs.wisc.edu
mailto:jsommers@cs.wisc.edu

e
Results: Delay Distribution Inference

1.0

¢ |Inferred distributions are
close to the true ones.

04 06 08

¢ Discretization of 100
microseconds for convolution.

¢ Results shown for UDP CBR
traffic scenario (top) and
self-similar traffic scenario
(bottom).
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Results: Loss Rate

e| 0SS rate estimates are much more accurate than
standard Poisson-based stream.

e Fast convergence to true loss rate (in paper).
loss rate SLAM RFC 2680
comparison true |estimate| true |estimate
Results for dumbbell (60%) 0.0008 | 0.0007 | 0.0017
o | dumbbell (76%) | 0.0049 | 0.0050 | 0.0055
traffic generated star: route 1 0.0170 | 0.0205 | 0.0289
using Harpoon.
star: route 2 0.0008 | 0.0006 | 0.0069
star route 3 0.0192 | 0.0178 | 0.0219

star: route 4 0.0005 | 0.0006 | 0.0002
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Results: Delay Variation

oSLAm DV matrix metric is more robust than R

® More accurately tracks congested and turbulent
conditions.

(in paper).
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Summary

oA set of new methodologies for accurate, lightweight
SLA compliance monitoring.

e Multi-objective probing: reduces overhead.

e Delay: accurate estimates of mean and quantiles; inferred
distributions are close to true distributions.

¢ | oss rate: accurate heuristic based on badabing probes.

e Delay variation: robust qualitative estimate of congestion.
eMethodologies implemented in a tool called SLAm.

¢ |_aboratory tests with one- and two-hop topologies.

e Source code will be released soon.
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The end

eOngoing and future work:

* Probe stream coordination in the network-wide setting
based on knowledge of topology.

e How to optimize for accuracy given a daily (or hourly, etc.)
probe budget?

e SLA compliance monitoring does not require perfect
accuracy; what appropriate tradeoffs be made between
“good enough” accuracy and overhead?
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