
Lowering the Barrier to Systems-level Networking Projects

Joel Sommers
Colgate University

jsommers@colgate.edu

ABSTRACT
Developing systems-level networking software to implement switches,
routers, and middleboxes is challenging, rewarding, and arguably
an essential component for developing a deep understanding of
modern computer networks. Unfortunately, existing techniques for
building networked system software use low-level and error-prone
tools and languages, making this task inaccessible for many under-
graduates. Moreover, working at such a low-level of abstraction
complicates debugging and testing and can make assessment diffi-
cult for instructors and TAs.

We describe a Python-based environment called Switchyard that
is designed to facilitate student projects for building and testing
software-based network devices like switches, routers, and middle-
boxes. Switchyard exposes a networking abstraction similar to a
raw socket, which allows a developer to receive and send Ether-
net frames on specific network ports, and provides a set of classes
to simplify parsing and construction of packets and packet head-
ers. Systems-level software created using Switchyard can be de-
ployed on a standard Linux host or in an emulated environment like
Mininet. Perhaps most importantly, Switchyard provides facilities
for test-driven development by transparently allowing the underly-
ing network to be replaced with a test harness that is specifically
designed to help students through the development and debugging
process. We describe experiences with using Switchyard in an un-
dergraduate networking course in which students created an Ether-
net learning switch, a fully functional IPv4 router, a firewall with
rate limiter, and a deep-packet inspection middlebox device.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]: Com-
puter science education; C.2.5 [Local and Wide-Area Networks]:
Internet (e.g., TCP/IP); C.2.6 [Internetworking]: Routers

General Terms
Design, Experimentation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE’15, March 4–7, 2015, Kansas City, MO, USA.
Copyright © ACM 978-1-4503-2966-8/15/03 ...$15.00.
http://dx.doi.org/10.1145/2676723.2677211.

Keywords
Routing, switching, middleboxes, test-driven development

1. INTRODUCTION
One of the most effective ways to learn is to do. In computer

science, the process of building software and “getting their hands
dirty” [7] often leads students to develop deeper understanding.
Creating significant software artifacts—especially programs per-
ceived as real—can be hugely motivating, engaging, and reward-
ing, and can spur new ways of thinking about what may otherwise
be abstract or complex concepts.

Particularly in computer networking, there have been many sys-
tems and tools developed over the past decade to facilitate hands-
on activities in order to bring concepts to life. For example, pub-
licly accessible large-scale emulation platforms [10] can be used
to experiment with networking protocols and programs, virtual-
ization tools are available for creating and working with complete
“networks-in-a-box” [9, 16], and recent generations of simulation
tools can seamlessly incorporate “real” network components [3].
Moreover, advanced courses have been created with the explicit
goal of building significant systems such as a complete IPv4 router [5].
Each of these platforms represent significant advances to teaching
and learning in computer networking.

Unfortunately, many of the most compelling and realistic hands-
on environments for building networked systems have a very steep
learning curve and present a high barrier to entry for many under-
graduates. One reason is that the more realistic systems tend to
be implemented using low-level languages and tools, e.g., C/C++.
As a consequence, it can be extremely challenging for students to
test and debug their programs since the underlying tools are imple-
mented at a rather low level of abstraction. For networked systems,
testing often involves the need to create carefully crafted packets in
order to verify an intended behavior or feature. As a result, creating
and executing tests often involves low-level and error-prone tools,
too. Any error or erroneous assumption can be difficult to detect,
and can lead to frustration and discouragement for students.

In this paper, we describe a new framework for building real net-
worked system software called Switchyard1. Switchyard provides a
Python API, and helps students avoid pitfalls associated with low-
level implementation languages by providing higher-level abstrac-
tions with which to work. Our motivation for providing carefully
designed abstractions for students to work with is to enable them
to focus on the key problems and concepts of building a router,
switch, middlebox, or other device, as opposed to struggling with
an arcane low-level language environment. Perhaps most impor-
tantly, Switchyard provides facilities for test-driven development,

1https://github.com/jsommers/switchyard

so that students can create or be provided with a suite of tests for
testing, debugging, and verifying intended behavior. The Switch-
yard framework enables seamless execution of student programs
in either the test harness environment, on a bare Linux host, or in
a Linux-based virtual machine environment such as Mininet [9].
In short, Switchyard lowers the barrier to system-level networking
projects by raising the level of abstraction of the tools used to con-
struct networked systems, and by including purpose-built debug-
ging and testing capabilities to help students with what are often
the most challenging aspects of systems software development.

We describe our initial experiences with using Switchyard in an
introductory undergraduate course in computer networking. In this
course, students were able to build a variety of systems, includ-
ing an Ethernet learning switch, a fully-functional IPv4 router, a
firewall with rate-limiting capabilities, and a deep-packet inspec-
tion middlebox device. Nearly all students completed the various
milestones for these projects, which is significant considering the
technical and conceptual complexity involved with each system.
We discuss observations from student evaluations, and describe our
ongoing efforts to expand and improve Switchyard.

2. RELATED WORK
Over the last decade, a number of hands-on educational environ-

ments that use either real or emulated network components have
been developed. At one end of the spectrum are platforms employ-
ing real networking hardware and components. For example, the
NetFPGA platform is a compelling platform for developing both
software and hardware components of networked systems such as
switches and routers [12], and entire courses have been developed
with the goal of building a complete IPv4 router 2. Similarly, the
Open Networking Laboratory [20,21] enables students to remotely
access and control real networking hardware in a laboratory set-
ting. Likewise, Yuan et al. [6] describe a set of hands-on experi-
ences for students using commodity PCs running Linux, and other
free and open source software such as Wireshark, Snort, and the
Zebra router. Yoo et al. [17] also describe an environment that
relies on the Zebra router and a set of scripts to configure hosts
in particular logical topologies for use in experiments. Similar
to these approaches is the one described by Pan [15] that centers
on using the Linksys WRT54GL and the OpenWRT firmware to
provide students with a realistic platform for experiments. Lastly,
the Wisconsin Advanced Internet Laboratory [4] employs a vari-
ety of networking components such as switches and routers, and
uses configuration and experiment management software based on
Emulab [10].

Hands-on settings that make use of the Emulab software have
seen fairly wide use in networking education. These environments
allow students to create virtual topologies using a set of commod-
ity hosts, and to emulate different link characteristics such as delay
and loss. They enable a fair amount of realism, while allowing lab
resources to be multiplexed among students. Laverell et al. [11] de-
scribe their experiences setting up and using the Emulab software in
networking courses. The Tinkernet system described in [13] con-
tains functionality similar to that in Emulab. The authors of that
paper describe a set of laboratory experiences that focus on build-
ing a networking protocol stack.

While Emulab-type systems virtualize links, other systems present
entire virtual network topologies to students, enabling different lev-
els of interaction with the virtual network. For example, the GINI
system [14] creates virtual networks using tunnels and Linux vir-
tual machines, enabling students to use standard tools and APIs to

2http://www.cl.cam.ac.uk/teaching/1415/P33/

interact with the virtual network. Similarly, the Virtual Distributed
Ethernet system [8] emulates an Ethernet switch and allows vir-
tual and real machines to be stitched together into topologies that
students can interact with using standard tools.

In a similar vein, the Virtual Network System (VNS) [5] allows
students to construct virtual network topologies and to safely in-
teract with their virtual network, as well as the rest of the Inter-
net, to send and receive raw packets. As a result, students can de-
sign and develop a simplified Internet router that runs in user space.
VNS has been decommissioned in favor of the lightweight virtual
machine-based Mininet system [9] that provides a Python-based
API for creating virtual topologies within a single host. Although
Mininet is largely designed for use with Openflow and software-
defined networking, it is more generally useful for student experi-
mentation, and projects created originally for VNS have been adapted
for use with Mininet 3. The Netkit system [16] is also based on
using Linux virtual machines for building virtual topologies and
running networking experiments. A fairly large number of ready-
made laboratory exercises have been developed for use with Netkit.
It is important to note that for each of these Linux VM-based sys-
tems, the programming API is C-based, and there are only limited
capabilities provided for testing and debugging (e.g., to help with
printf-style debugging), unlike Switchyard.

3. SWITCHYARD GOALS AND DESIGN
In this section we discuss the goals and motivation behind Switch-

yard, and describe its design, implementation, and how it is used in
student projects.

3.1 Goals
As discussed above, many of the educational platforms and tools

developed over the past several years to enable students to gain
hands-on experience with networking protocols and systems soft-
ware development require use of low-level tools and language en-
vironments. Although low-level implementation languages such as
C are important for undergraduates to be exposed to, they can make
it difficult for students to focus on and grapple with the underlying
systems concepts that they should be learning. A key motivation for
developing Switchyard was to address the limited availability of
systems-building environments that leverage higher-level abstrac-
tions and tools. Below, we describe the main pedagogical goals of
Switchyard.

1. Engage students in building networked systems and proto-
cols, such as Ethernet learning switches, IPv4 routers, and im-
plementations of TCP. As mentioned previously, this is one of the
key motivations for Switchyard. We strongly believe that “hands-
on” projects are the best ways to develop a deep understanding of
networks and other computer systems.
2. Construct the framework such that, as far as possible, stu-
dents are able to focus on networking and systems concepts
rather than on arcane language or API details. Simply put, use
of low-level languages can pose a significant barrier for students
with limited experience (i.e., many undergraduates) to engage in
systems-level projects. Our experience is that raising the level of
abstraction through use of a higher-level language can help signif-
icantly. Moreover, careful design of the API that students use can
help to focus student efforts on core concepts rather than extrane-
ous details.
3. Provide debugging and testing facilities to assist students
with development of complex systems software. When facing
3https://github.com/mininet/mininet/wiki/
Teaching-and-Learning-with-Mininet

challenging programming assignments, students often do not know
where to start. Encouraging a test-driven development cycle can
help to funnel students through specific functionality milestones
toward completing an assignment. Moreover, we believe that in
an educational context, it is important to integrate testing facilities
with capabilities to assist with debugging and inspection of pro-
gram state so that when tests fail students have enough context to
understand why a test fails.
4. Ease the burden of assessing technically complex student
projects. As many faculty can attest, examining complex software
systems created by students can be is extremely time consuming.
Especially for faculty who do not have graduate student TAs to
assist with grading, the difficulty posed by assessing such projects
creates a disincentive to assigning challenging projects such as con-
struction of an IPv4 router.

3.2 Framework design and API
Switchyard is designed as a Python program and module that

exposes a fairly minimal and simple API to a programmer. The
conceptual structure of Switchyard is depicted in Figure 1. The API
is designed to provide the most basic and essential functions for
implementing the core logic of a network device, including sending
a packet, receiving a packet, and obtaining a list of ports (interfaces)
and their configurations on the device. Switchyard also includes a
library to simplify packet parsing and construction.

Switchyard framework

recv_packet()
send_packet() ports()

The modeled
network

device, with
p ports

(8 in this
figure)

Retrieve info
about ports on

device (i.e.,
names and
addresses

assigned to
each).

Send or
receive a
packet to/

from a specific
port on the

system.

Switchyard application models
the core logic components of the

network device (e.g., a
hub, bridge, switch, router, firewall, etc.)

Basic2API2calls:

Figure 1: Switchyard design

A program designed to work within Switchyard is written as a
Python program that includes one required function: srpy_main 4,
as shown in Listing 1. This required function must take one param-
eter, which is an object on which a student can call the core Switch-
yard API functions send_packet, recv_packet, and ports. As
Listing 1 shows, a conventional structure to a Switchyard program
is to have an infinite while loop within the main entrypoint func-
tion. Inside that loop packets are received and handled in some way,
e.g., to forward them out one or more ports. The recv_packet
function returns a tuple containing a reference to a packet and the
name of the port on which the packet arrived (e.g., eth0). The
recv_packet can optionally take a timeout value. If no pack-
ets arrive before the timeout value, a Timeout exception is raised.
When the underlying framework shuts down, it raises an exception
that can be handled in the device implementation code in order to
perform a graceful shutdown.

3.3 Framework implementation
Switchyard is implemented as a Python module that consists of

classes to enable interaction with real network interfaces on the
4The name srpy is a reference to the venerable sr (software
router) projects developed as part of the VNS project [5].

def srpy_main(net):
while True:

try:
packet, port_name = net.recv_packet()

except Shutdown:
we got shutdown signal
break

handle an incoming packet

Listing 1: Basic structure of a Switchyard program.

host system or to enable interaction with a test harness that involves
no actual network I/O. Invoking the framework is accomplished
through a command-line interface. The main Switchyard program
(srpy) requires at least one argument, which is the name of a file
containing an entrypoint to the student’s network device implemen-
tation. The srpy program loads the student’s file and locates the
srpy_main function to be executed. Additional command line op-
tions determine whether Switchyard starts up in real mode or in test
mode. Each of these modes are described below.

Students can build and parse packets using a library built into
Switchyard. In the version of Switchyard that we initially used in
the classroom, we delegated calls to the packet parsing libraries
in the POX Openflow controller [2]. There were various pitfalls
we encountered with that approach, and we developed a new set
of packet parsing libraries from scratch (though based on the POX
libraries) which we describe in Section 4.2.

3.3.1 Real network mode
By default, srpy attempts to use all network interfaces on the

host system (except for the loopback interface) for sending and re-
ceiving packets. It uses a Python wrapper around libpcap for
sending and receiving packets, which enables some degree of porta-
bility for Switchyard.

Upon framework startup, a thread is started to handle I/O for
each separate network interface used. If the underlying libpcap im-
plementation supports it, the threads open pcap devices for each
interface in a non-blocking manner. Packets that arrive on any net-
work device are converted to a packet object representation (rather
than as a raw sequence of bytes) and added to the tail of a shared
queue along with the name of the device on which the packet was
received, and a timestamp. When user-level code calls recv_packet,
the packet at the head of the queue is removed and returned.

When user code calls send_packet, it supplies a packet object
and the name of the device on which to send the packet as parame-
ters. The Switchyard framework serializes the packet and delivers
it to the thread that handles I/O for the given device via another
queue. If there are errors associated with the packet object given to
send_packet or if there is an invalid device name specified (e.g.,
no device exists for the given name), an error is returned.

One key implication of using libpcap as the low-level network
access mechanism is that it is often necessary to install packet filters
to prevent host processing of incoming packets. For example, if a
Switchyard user program should be responsible for ARP requests
and responses, the host system must be prevented from responding.
The way this situation is currently handled is that students are given
a wrapper script to start Switchyard that installs iptables and/or
ebtables rules. This same pattern of providing custom handling
for packets and preventing host processing for the same packets
by installing firewall rules is a common approach taken with some
network measurement tools, e.g., [18, 19].

3.3.2 Test harness mode
When started in testing mode, Switchyard requires at least one

test scenario to be supplied as a command-line argument. The sce-
nario specification defines some set of physical or logical ports that
are configured on an imaginary network device, as well as any ad-
dressing information associated with each port, i.e., an Ethernet
address and (optionally) an IPv4 address and subnet mask. The
scenario also defines a series of test expectations. In particular,
an expectation may be that a specific packet arrives on a given in-
terface of the device or that the Switchyard user program sends a
packet out a particular interface.

An (incomplete) example of a program for creating a test sce-
nario is shown in Listing 2. The TestScenario class in Switch-
yard encapsulates various details associated with a set of tests. Af-
ter constructing the scenario object, three network interfaces with
specific Ethernet addresses are added to an imaginary device. Fol-
lowing that, a PacketInputEvent expectation is created to in-
dicate that a packet should arrive on a particular interface. The
meaning of this statement is that the creator of the test expects the
Switchyard user program to call recv_packet, and that the packet
object testpkt will be returned in response to that call. Lastly, a
PacketOutputEvent expectation is created to indicate that the
packet testpkt should be sent out two interfaces. The meaning
of this expection is that the Switchyard test framework will require
the user program to send a packet that exactly matches testpkt
out the two interfaces eth1 and eth2.
scenario = TestScenario(’hub tests’)
scenario.add_interface(’eth0’, ’10:00:00:00:00:01’)
scenario.add_interface(’eth1’, ’10:00:00:00:00:02’)
scenario.add_interface(’eth2’, ’10:00:00:00:00:03’)
testpkt = ... # code to create testpkt packet object
scenario.expect(
PacketInputEvent(’eth1’, testpkt),
’’’An Ethernet frame with a broadcast
destination address should arrive on eth1’’’)

scenario.expect(
PacketOutputEvent(’eth0’, testpkt,

’eth2’, testpkt),
’’’The Ethernet frame with a broadcast destination
address should be forwarded out eth0 and eth2’’’)

Listing 2: Test scenario example.

Expectations created for a PacketInputEvent are straightfor-
ward: the test creator must construct a packet object that will be
delivered to the user program under test. While this portion of the
example is incomplete, the steps used to create the test packets are
identical to the steps required in a standard user program.

Expectations created for a PacketOutputEvent are somewhat
more complex, because they require matching a packet sent by a
user program against a reference packet. Currently, Switchyard ac-
commodates exact match testing as well as matching on selected
header fields (including support for “wildcards”). The header fields
used for this latter type of match are currently the same fields al-
lowed for matching packet header fields in the Openflow 1.0 spec-
ification [1]. In addition, arbitrary predicate functions may be sup-
plied, e.g., to test that an IP TTL is decremented by 1 when for-
warding an IP packet. Finally, test expectations can be created to
handle the situation in which a test creator expects the user pro-
gram to call recv_packet, but the test creator wants the call to
recv_packet to time out and not return anything. This expecta-
tion is useful for testing situations in which a protocol implementa-
tion must handle the lack of response to a request, such as a failed
ARP query.

The test scenario API is designed to be used either by an instruc-
tor or TA or by students. In the case of instructor-created test sce-

narios, it would clearly be inappropriate to distribute the test sce-
nario construction code itself, since that code would naturally con-
tain expressions for creating the same packets that students must
construct as part of a given assignment. Switchyard contains facil-
ities to serialize a test scenario for public distribution to students.
The serialization procedure first uses Python facilities for serializ-
ing the TestScenario object created in a given test scenario file.
The result of this step is a string that contains representations of
each of the expectations in a given scenario, including string rep-
resentations of each of the packets used. Importantly, the program
code that created the packet objects is no longer present. Next,
the serialization procedure compresses the serialized test scenario,
converts it to a base-64 string, and writes that string to a file. This
file can be posted as part of an assignment for students to then use
while developing their code.

3.4 Example: a simple hub
We now show through an example how a test scenario can be

used, and how it can facilitate test-driven development by students.
The example user application we use is a network hub—an ex-
tremely simple network device that floods any packet received on
an interface out all interfaces except the input interface. The test
scenario example above (Listing 2) shows the beginning of the
testing code used for this example, which consists of 8 total ex-
pectations (4 packet input event expectations, and 4 corresponding
packet output expectations).

We first show in Listing 3 a broken implementation of a hub.
Instead of flooding a packet out all ports except the input, this pro-
gram incorrectly sends each packet received back out the same port
on which it arrived. When applying the test scenario to this pro-
gram, the Switchyard framework gives output similar to that shown
in Figure 2. We see in the figure that Switchyard reports that one
test passed (the first packet input event expectation), 1 failed (the
first output expectation was not met), and that there are 6 tests that
could not be evaluated due to a test failure. The output is nor-
mally color-coded to give a visual indication of test passage (green)
and/or failure (red). When a test does not pass, Switchyard can op-
tionally execute the Python debugger in such a way as to start the
debugger as close to the part of the user program that failed as pos-
sible. This capability is enabled with a command-line switch.

We also see in the test output quite a bit of detail related to dif-
ferent expectation events and individual packets that were either re-
ceived or sent. Switchyard can optionally show full packet dumps
instead of abbreviated contents (which is the default) when tests
pass or fail. Any explanatory text for a given test is created as part
of a test scenario and supplied verbatim from the original scenario
so the writer of a test can supply as much or as little context as he
or she wishes, in order to help students to understand why a test
may pass or fail.

When the broken hub program in Listing 3 is fixed to correctly
flood a packet out all interfaces except the input, the output of
Switchyard becomes green to reflect the fact that all the tests now
pass. The partial test output for a correct hub implementation is
shown in Figure 3. Once all tests pass successfully, the code can
be refactored to improve its design and structure while preserving
the correct functionality in a cycle commonly known as “red-green-
refactor”.

4. SWITCHYARD IN ACTION
In this section, we describe the set of assignments that we have

used thus far with Switchyard, and discuss student experiences
with using Switchyard in an introductory undergraduate network-
ing course.

def srpy_main(net):
while True:

try:
dev,packet = net.recv_packet()

except Shutdown:
return

net.send_packet(dev, packet)
net.shutdown()

Listing 3: Switchyard program for implementing a hub device (bro-
ken).

Results for test scenario hub tests: 1 passed, 1 failed,
6 pending

Passed:
1 An Ethernet frame with a broadcast destination address

should arrive on eth1
Expected event: recv_packet
[30:00:00:00:00:02>ff:ff:ff:ff:ff:ff IP] on eth1

Failed:
The Ethernet frame with a broadcast destination address
should be forwarded out ports eth0 and eth2

Expected event: send_packet(s)
[30:00:00:00:00:02>ff:ff:ff:ff:ff:ff IP] out eth2 and
[30:00:00:00:00:02>ff:ff:ff:ff:ff:ff IP] out eth0

Pending (couldn’t test because of prior failure):
1 An Ethernet frame from 20:00:00:00:00:01 to

30:00:00:00:00:02 should arrive on eth0
Expected event: recv_packet
[20:00:00:00:00:01>30:00:00:00:00:02 IP] on eth0

2 Ethernet frame destined for 30:00:00:00:00:02 should be
flooded out eth1 and eth2

Expected event: send_packet(s)
[20:00:00:00:00:01>30:00:00:00:00:02 IP] out eth2 and
[20:00:00:00:00:01>30:00:00:00:00:02 IP] out eth1

Figure 2: Code and output snippet for failed test

4.1 Assignments
We have used Switchyard as a basis for four projects of varying

scope and difficulty in an undergraduate networking course, and
have plans for additional projects and activities.

Learning Switch. Developing an Ethernet learning switch is quite
simple using Switchyard (about 40 lines of code). This exercise
was used as an introduction to Switchyard and its APIs, to execut-
ing and understanding test output, and to running Switchyard code
on a Linux (virtual machine) host in Mininet. Students were sup-
plied with a comprehensive set of tests for this project since they
were unfamiliar with the APIs.

Results for test scenario hub tests: 8 passed, 0 failed,
0 pending

Passed:
1 An Ethernet frame with a broadcast destination address

should arrive on eth1
Expected event: recv_packet
[30:00:00:00:00:02>ff:ff:ff:ff:ff:ff IP] on eth1

2 The Ethernet frame with a broadcast destination address
should be forwarded out ports eth0 and eth2

Expected event: send_packet(s)
[30:00:00:00:00:02>ff:ff:ff:ff:ff:ff IP] out eth2 and
[30:00:00:00:00:02>ff:ff:ff:ff:ff:ff IP] out eth0

Figure 3: Output snippet for two passed tests

IP Router. Students developed a full IPv4 router over three pro-
gressive stages. The first stage required students to develop code for
responding to ARP requests, and also served as an introduction to
the router projects. The second stage required students to generate
ARP requests and handle ARP responses, and to implement IP rout-
ing (longest prefix match) using a statically configured forwarding
table. The third stage required students to respond to ICMP echo
requests (“pings”) as well as generate ICMP errors such as time
exceeded messages and network/host/port unreachable messages.
Creating a fully functional IPv4 router involves quite a bit of tech-
nical complexity, and students were provided with several tests for
each stage to help guide them through the development process.
Students were also provided with scripts for running their router in
a Mininet environment in order to observe its behavior (e.g., using
traceroute and other “real” tools).
Firewall. This project was designed as an add-on to the IPv4 router
project, but could easily be designed differently. Students devel-
oped firewall functionality for their router based on a simple rule
syntax. In addition to accept/deny firewall processing, students also
implemented a token bucket rate limitation feature for rules that
had specified rate limits. Students were given guidance for writing
tests, but were not provided with any automated Switchyard tests.
Deep-packet Inspection Middlebox. For this project, students
developed two network components: a Openflow-based switching
element that would forward packets from pre-specified flows to a
“deep-packet inspection” (DPI) device and forward other flows nor-
mally, and a DPI middlebox that inspected and optionally rewrote
application-layer content if certain “suspicious” strings were found.
When application content was modified, fields in lower-layer packet
headers also needed to be amended (i.e., length fields). This project
gave students some exposure to SDN protocols and non-standard
packet forwarding, and also provided the basis for discussing cur-
rent news events related to government spying.

Additionally, we intend to create a new introductory-level exer-
cise oriented around understanding packet headers by having stu-
dents build a Wireshark-like tool, and we have plans to create sev-
eral more projects including adding a dynamic routing stage to
the IP router, a network/port address translator, and an IPv4–IPv6
gateway. Currently, all the exercises are oriented around network-
ing functionality at intermediate devices such as switches, routers,
and middleboxes, but we are planning to expand Switchyard to ac-
commodate projects oriented around end-host functionality such as
transport and application layer capabilities.

4.2 Classroom experiences
Thus far, qualitative and some quantitative feedback have been

collected from students through surveys. Responses to these sur-
veys have been overwhelmingly positive. Students reported that the
system-building activities were very beneficial to their learning and
developing a better understanding of networking concepts. Student
evaluations also indicated very low-levels of frustration, which we
attribute to the test-driven nature of development and the potential
for students to focus efforts on passing one test at a time. Indeed,
several students expressed that they wished they had been able to
tackle additional system-building projects.

Two specific quantitative questions we asked were: (Q1) To what
degree did the router and switch projects help your understand-
ing of course concepts (e.g., link-layer and network addressing,
packet headers and encapsulation, IP forwarding, routing, etc.)?,
and (Q2) To what degree did the test-driven nature of SRPY projects
help with the projects? For each of these questions, students re-
sponses were based on a 1–5 scale (1=not helpful, 3=moderately
helpful, 5=extremely helpful). We received 23 responses to these

questions. For Q1, the student response average was 4.38 (σ =
0.96) and for Q2, the student response average was 4.69 (σ = 0.48).

Common themes that emerged from other (qualitative feedback)
questions were that students felt that the router-building projects
were “cool” and that the testing and debugging facilities in Switch-
yard were “essential” to them being able to accomplish the vari-
ous tasks to build the router. One student noted that “the router
projects were hard due to the inherent complexity, not because of
[Switchyard] or [Python]”, and another student captured the feeling
of several students, that “the projects were not easy, and when we
struggled it was mostly with conceptual topics”. Similarly, another
student wrote that “[Switchyard] was easy to learn and struggling
with the concepts a little was actually helpful.”We view the fact that
students reported that when they struggled it was with networking
concepts rather than the Switchyard API or language details as par-
ticularly encouraging.

Lastly, the responses suggested some areas for improving the
APIs and pedagogical approach with Switchyard. First, although
Python is taught in our CS1 course, a couple students did remark
that they felt their biggest problem was Python syntax. Also, al-
though the automated tests were generally viewed positively, one
student noted that they felt like the tests made the projects feel too
easy. There is certainly a balance to be struck between providing
too few and too many tests, and having students write more or less
tests. Most students felt that the projects still contained substan-
tial difficulty, but the number of tests given to students may need
to be modified semester-to-semester, depending on the group of
students in a course. Finally, three students noted that the packet
construction and parsing libraries were sometimes difficult to work
with. The version of Switchyard used by the students leveraged the
packet library from the POX Openflow controller, which does not
prevent a variety of common error patterns. One particular problem
is that new attributes (instance variables) can be added to objects
dynamically. As a result, a misspelled attribute (e.g., using source
instead of src as the attribute for assigning an Ethernet source
address) becomes a difficult-to-detect logic error. We completely
revised the packet parsing and creation library in Switchyard to
prevent many of the problems we observed students to have, us-
ing Python language features and implementation patterns. Among
other improvements, misspelled attributes now result in an obvious
runtime exception.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we describe a new Python-based framework called

Switchyard for building networked systems such as switches, routers,
and middleboxes. By virtue of using a higher-level language (Python)
and through careful design of its APIs and libraries, Switchyard
helps undergraduate students avoid pitfalls associated with low-
level implementation languages, while still enabling them to build
real systems. Switchyard supports test-driven development so that
students can be given a set of tests or tasked to create them, and
the framework seamlessly supports execution of student programs
within the test harness or in a Linux environment. We describe
our initial experiences with using Switchyard in an undergraduate
networking course, and discuss how these experiences have shaped
our ongoing efforts to improve the framework and libraries.

Our plans for future development of Switchyard include further
simplifying and error-proofing its APIs and libraries and signifi-
cantly expanding the set of exercises and materials available. We
also plan to simplify execution of Switchyard in various environ-
ments (e.g., by automating installation of iptables/ebtables
rules as appropriate). Lastly, we plan to improve forwarding perfor-

mance so that Switchyard can effectively be used in Gigabit-speed
environments.

Acknowledgments
This material is based upon work supported by the National Sci-
ence Foundation under grant CNS-1054985. Any opinions, find-
ings, and conclusions or recommendations expressed in this mate-
rial are those of the author and do not necessarily reflect the views
of the National Science Foundation.

6. REFERENCES
[1] Openflow switch specification, version 1.0.0.

http://archive.openflow.org/documents/
openflow-spec-v1.0.0.pdf, 2009.

[2] About POX. http://www.noxrepo.org/pox/about-pox/,
2014.

[3] Network Simulator ns-3. http://www.nsnam.org, 2014.
[4] Wisconsin Advanced Internet Laboratory.

http://wail.cs.wisc.edu, 2014.
[5] M. Casado and N. McKeown. The virtual network system. ACM

SIGCSE Bulletin, 37(1), 2005.
[6] D. Yuan et al. An instructional design of open source networking

laboratory and curriculum. In Proceedings of the 10th ACM SIGITE,
2009.

[7] N. Feamster and J. Rexford. Getting students’ hands dirty with
clean-slate networking. In ACM SIGCOMM Education Workshop,
2011.

[8] M. Goldweber and R. Davoli. VDE: an emulation environment for
supporting computer networking courses. ACM SIGCSE Bulletin,
40(3), 2008.

[9] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown.
Reproducible network experiments using container-based emulation.
In Proceedings of CoNEXT ’12, 2012.

[10] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack,
K. Webb, and J. Lepreau. Large-scale Virtualization in the Emulab
Network Testbed. In USENIX Annual Technical Conference, 2008.

[11] W. D. Laverell, Z. Fei, and J. N. Griffioen. Isn’t it time you had an
Emulab? SIGCSE Bull., 40, March 2008.

[12] J. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,
R. Raghuraman, and J. Luo. NetFPGA—An Open Platform for
Gigabit-Rate Network Switching and Routing. In IEEE International
Conference on Microelectronic Systems Education, pages 160–161,
2007.

[13] M. Erlinger et al. Tinkernet: a low-cost networking laboratory. In
Proceedings of the sixth ACE, 2004.

[14] M. Maheswaran, et al. GINI: a user-level toolkit for creating micro
internets for teaching & learning computer networking. In
Proceedings of the 40th ACM SIGCSE, 2009.

[15] J. Pan. Teaching computer networks in a real network: the technical
perspectives. In Proceedings of the 41st ACM SIGCSE. ACM, 2010.

[16] M. Pizzonia and M. Rimondini. Netkit: easy emulation of complex
networks on inexpensive hardware. In Proceedings of the 4th
International Conference on Testbeds and research infrastructures
for the development of networks & communities, 2008.

[17] S. Yoo et al. Remote access internetworking laboratory. In
Proceedings of the 35th ACM SIGCSE, 2004.

[18] S. Savage. Sting: A TCP-based Network Measurement Tool. In
USENIX Symposium on Internet Technologies and Systems,
volume 2, 1999.

[19] J. Sommers, P. Barford, and W. Willinger. A Proposed Framework for
Calibration of Available Bandwidth Estimation Tools. In Proceedings
of IEEE Symposium on Computers and Communication, June 2006.

[20] C. Wiseman, K. Wong, T. Wolf, and S. Gorinsky. Operational
experience with a virtual networking laboratory. SIGCSE Bull., 40,
March 2008.

[21] K. Wong, T. Wolf, S. Gorinsky, and J. Turner. Teaching experiences
with a virtual network laboratory. SIGCSE Bull., 39, March 2007.

