Recent Advances in Network Intrusion Detection
System Tuning

Joel Sommers
University of Wisconsin-Madison
jsommers @cs.wisc.edu

Abstract— We describe a traffic generation framework for
online evaluation and tuning network intrusion detection sys-
tems over a wide range of realistic conditions. The framework
integrates both benign and malicious traffic, enabling generation
of IP packet streams with diverse characteristics from the
perspective of (i) packet content (both header and payload), (ii)
packet mix (order of packets in streams) and (iii) packet volume
(arrival rate of packets in streams). We begin by describing a
methodology for benign traffic generation that combines payload
pools (possibly culled from traces of live traffic) with application-
specific automata to generate streams with representative char-
acteristics. Next, we describe a methodology for malicious traffic
generation, and techniques for integration with benign traffic to
produce a range of realistic workload compositions. We realize
our traffic generation framework in a tool we call Trident,
and demonstrate its utility through a series of laboratory-based
experiments using traces collected from our departmental border
router, the DARPA Intrusion Detection Evaluation data sets
provided by Lincoln Lab, and a suite of malicious traffic modules
that reproduce a broad range of attacks commonly seen in today’s
networks. Our experiments demonstrate the effects of varying
packet content, mix, and volume on the performance of intrusion
detection systems.

I. INTRODUCTION

Malicious traffic in the Internet is growing at an alarming
rate both in terms of volume and diversity. This motivates the
need for methods and tools that can be used to assess and tune
the capabilities of network intrusion detection systems (NIDS)
to a wide range of both malicious and benign traffic. Standard
methods for NIDS testing include the use of canonical packet
traces for offline tests or traffic generation systems for online
evaluation in a controlled laboratory setting. Regardless of
the approach, a standardized, comprehensive test suite for
NIDS enables rule sets and configurations to be tuned to
meet projected demands, and detailed comparisons between
different systems.

The landmark work by McHugh [1] introduced a set of
requirements for NIDS test traffic streams. A summary of these
requirements is that tests must be conducted with a diverse
set of representative packet flows (including packet content)
of both benign and malicious traffic. A natural approach for
addressing representativeness in both flows and content is to
take empirical traces from real networks for offline analysis.
However, this approach is often considered impractical due
to standard privacy concerns and the difficulty in accurate
labeling of individual packets as benign or malicious. The
most notable exceptions are the well known DARPA data

Vinod Yegneswaran
University of Wisconsin-Madison
vinod @cs.wisc.edu

Paul Barford
University of Wisconsin-Madison
pb@cs.wisc.edu

sets developed at Lincoln Lab in 1998-1999 for offline NIDS
testing [2], [3]. The authors of those studies went to great
lengths to create software robots that mimicked user behavior
as a means for gathering empirical trace data. While this work
has since come under some criticism, it remains the largest
publicly available data set for offline NIDS testing, and has
been used in many studies.

Another approach to addressing the challenge of robust
NIDS testing is to generate traffic streams synthetically. In
principle, this process can result in traces for offline tests or
in live streams for online tests. While many traffic generators
have been developed for specific network systems tests, none
of them address the problem of robust NIDS testing in
particular. Perhaps most importantly, the synthetic generation
of diverse, representative benign traffic (including payload
content) has not been well addressed.

Our goal in this work is to create tools and a test methodol-
ogy for evaluating and tuning the growing number of stateful,
protocol-aware intrusion detection systems, with a secondary
aim of meeting the test requirements outlined in [1]. These
objectives guided our design of a collection of tools, called
Trident, which can be used to generate packet traces for tra-
ditional offline evaluations, and can also be used in controlled
laboratory settings to assess the online performance character-
istics of NIDS or other network systems (e.g. firewalls). The
capabilities of Trident include:

« The ability to generate representative benign traffic

streams, including payloads,

o The ability to construct and generate new types of mali-

cious traffic,

o The ability to modulate the mixture of benign and mali-

cious test traffic,

o The ability to modulate the volume of both benign and

malicious test traffic,

o The ability to modulate temporal arrival processes of both

benign and malicious test traffic.

To the best of our knowledge, no existing toolset provides
this combination of capabilities, and we show that they enable
a unique and important range of tests for NIDS.

One of the most important features of Trident, and some-
thing that distinguishes it from simple malicious traffic genera-
tors such as [4], is that it includes representative benign traffic.
Trident uses handcrafted automata-based representations of
popular network services to generate a wide range of protocol-

compliant packet streams. The packets (headers and payload)
within the streams are extracted from traces that have been
carefully groomed to remove malicious content. We outline
three strategies for trace grooming in § A more complete
discussion is found in [5].

We demonstrate the capabilities and utility of Trident
through a series of tests on live systems in a controlled
laboratory environment. We begin by populating Trident with
two different benign traffic traces. Next, we create a set of
attack modules for malicious traffic commonly seen in today’s
networks, as explained in § We use the combination of
benign traces and attack modules to assess the behavior of
two popular NIDS over a range of traffic volume and packet
diversity (content and mix). Our experiments are based on
a set of test hypotheses and protocols designed for each
system type. The results show that Trident easily exposes an
important range of behavior in our test systems. In particular,
we show how NIDS performance can be sensitive to the mix
of benign application payloads. We also show that the relative
proportions of malicious flows to all traffic has a very clear
impact on NIDS performance and resulting alarm quality.
We further show that while traffic volume has a clear effect
on NIDS packet loss, its effect on alarm quality is system
dependent. The key implication of our results is that Trident is
well suited for evaluating NIDS or other network systems that
are protocol-aware and stateful (maintain connection state for
detecting anomalous or malicious activity spanning multiple
packets or connections). Our results also suggest that Trident
would be very useful for tuning NIDS rule sets and the host
systems on which they run.

II. RELATED WORK

Several tools exist for generating purely malicious traffic,
including [4], [6], [7], [8]. Trident is also related to the
Metasploit and Exploitation Framework projects that provide
libraries of common modern attacks [9], [10]. Efforts toward
generation of both benign and malicious traffic streams include
[11], [12] and a commercial product from Skaion [13]. Trident
differs from these systems in its approach to benign traffic
generation and the flexibility that it provides in controlling
the volume, mix and content of produced traffic streams.

A study following on McHugh’s critique was performed by
Mahoney and Chan [14]. The authors conducted an evaluation
of anomaly-based NIDS with an enhanced version of the
DARPA data set created by injecting benign traffic from a
single host (their department web server). Our work, while
somewhat similar, differs in the following ways: (i) our target
systems are much broader than anomaly-based NIDS; (ii) our
goal is to provide a flexible and extensible framework for
recreating a wide range of attack scenarios by modulating the
mix of malicious and benign traffic, control of traffic volumes,
and inclusion of representative benign payload contents; (iii)
we consider the problem of separating potentially malicious
traffic from benign traffic based on protocol knowledge and
statistical properties of the traffic instead of relying on a
firewall or manual grooming.

III. CONSTRUCTING A BENIGN TRACE

One of the most important aspects of NIDS evaluation is
a thorough assessment of the system’s propensity to generate
alarms in the absence of malicious traffic (false positives).
The quantity of false positives is intrinsically tied to both
the NIDS under test and the nature of benign traffic in the
test environment. Therefore, one of the essential aspects of
NIDS evaluation for any network is a benign traffic workload
that features the spectrum of characteristics that are typical or
expected for that network. While one might be able to readily
capture a collection of packet traces from the network over
an appropriate period of time, the difficulty arises from the
fact that we expect these traces to contain a mixture of both
benign and malicious traffic. So, the question becomes how fo
identify and isolate the benign traffic. In many ways, this is
precisely the intrusion detection problem.

There are several possibilities for populating Trident with
benign traffic payloads. We describe three strategies below.
While other techniques may be possible, we believe that these
strategies are reasonable, effective and cover a large portion
of the design space.

o NIDS-based Strategies: The first strategy is to use a
standard NIDS such as Snort (that is well known to generate
a large number of false alarms with its full rule set, but also
detects true attacks accurately) to groom a packet trace taken
at a local site. We argue that this approach is problematic since
a portion of the connections that will be identified as malicious
(and therefore removed) are likely to be those that are of
“highest interest” in the sense that they are benign packets
that trigger alarms (i.e., false positives).

o Synthetic Generation Strategies: A second strategy is
to use synthetic traffic generated using software robots that
emulate user behavior. The idea is to craft the robot to ensure
that it only creates connections with known good hosts (either
local or remote). This data is then used as a basis for further
expansion of the trace through synthetic generation of packets
(as in the DARPA data set). While this strategy is clearly
limited in terms of representativeness from an application mix
and payload perspective, it may be appropriate for certain
environments. A further benefit of this method is that since
the base trace is generated by robots, it may enable trace data
sets to be shared.

o Trust-based Strategies: The third strategy is to groom a
packet trace taken at a local site using connection heuristics
(e.g., failure rates or scanning characteristics). This approach
exploits the differences in connection characteristics of benign
versus malicious sources based on a model of malicious
connection behavior. This technique is attractive because it
is based on transport level characteristics, does not require
knowledge of application semantics, and is not biased by a
particular system (NIDS independence). We posit that a trust-
based grooming strategy results in a set of packets labeled
as benign that have a higher opportunity for uncovering false
positive behavior. It is, however, limited in that it might miss
targeted attacks by sophisticated adversaries that have connec-

(a) HTTP service automa-
ton.

SMTP server SMTPEHLO SMTP EHLO
banner response

SMTP BEGIN SMTP Client SMTP c\ fent swp Client SMTP Server
ssage 1st pach = sage last packet received

SMTP MAIL SMTP MAIL

FROM response

SMTPRCPTTO SMTP RCPT TO
response

SMTP DATA

(b) SMTP service automaton.

Fig. 1. Service automata for two common application protocols.

tion characteristics sufficiently similar to benign users. In [5],
we examine the trust-based strategy by defining the specifics
of a trust-based grooming methodology and evaluating its
performance using a packet trace from our department border
router.

IV. THE TRIDENT SYSTEM

In this section we describe how application-specific benign
traffic streams and malicious traffic streams are generated
within the Trident framework.

A. Benign Traffic Generation

Several studies of IDS performance, including many papers
that use the DARPA data set, consider detection characteristics
from an offline evaluation (e.g., [15]). As we show in the
results of our laboratory experiments, the dynamic character-
istics of traffic streams, notably the mix and volume, can have
huge impact on NIDS performance and provide key insights
for system tuning. Therefore, one of the challenges of benign
traffic generation is to dynamically generate diverse traffic
streams based on knowledge obtained from a limited set of
traces.

In Trident, we adopt protocol-aware emulation of traffic
based on payload interleaving. Payload interleaving is our term
for dynamic construction of flows through random selection of
packets from payload pools corresponding to particular states
in a service automaton, as we describe below. This method
supports the generation of synthetic traffic streams with real-
istic application level headers and payloads. We describe the
components of our protocol-aware emulation scheme below.

e Automata Generation. At the heart of our benign traffic
generation system is a collection of automata with states that
describe classes of packets observed in a specific service. In
our preliminary exploration of the feasibility of this approach,
we use basic automata to describe the most popular services
seen in our test data sets described in § We do not
claim completeness of these automata or suggest that they
exercise all classes of NIDS. We use them as examples to
demonstrate the utility of our methods and to show how
they can accommodate flexible recreation of a broad class of
protocols.

Our automata describe each service through a three phase
abstraction that is typical of most network protocols. The first
stage, prologue, describes the application-level client server
handshake. The next stage is dialog, in which client and
server exchange data. The final stage is epilogue, in which
the participants agree to gracefully tear down the connection.
Each stage in the conversation could involve several states in
the automata and the final stage is optional in some protocols
such as HTTP. We created automata that model the packet
exchange protocols for HTTP, SMTP, DNS, Telnet, FTP and
SSH (i.e., the most popular services from our data sets). Our
automata-based abstractions for HTTP and SMTP are shown in
Figures [I(a)] and [I(b)] Pipelined HTTP requests are currently
not supported but should be an easy extension.

A weakness of a protocol-aware automata-based system
such as ours is that the effectiveness of the evaluation is related
to the quality of the automata. It is our hope that a library of
automata will be developed by the research community over
time.

e Payload Classification. The raw traces classified as
benign (i.e., trusted or trust neutral) are given as input to the
payload classification module which we call payload-gen.
The purpose of payload—gen is to classify packets in the
trace into various pools that correspond to particular states
of different service automata. In this step, packets generated
in the same application state, but from different flows, are
aggregated into the same pool. This aggregation does not
preserve packet ordering from any individual flow.

e Payload Sanitization. Following classification, payloads
are discarded or modified to ensure that they do not violate a
simple set of requirements. Discard is appropriate if the orig-
inal payload suffered truncation during packet capture or the
payload does not match a valid automata state. Modification
is generally done to simplify service automata definition and
processing, and to avoid generation of false alarms that would
result simply as an effect of interleaving. Our current approach
is to be aggressive in these normalization steps. For example,
with HTTP, we remove Connection, Content—-length,
and Transfer-encoding headers from server responses,
since a NIDS could conceivably use these items to monitor a
connection in progress. Since we wish to arbitrarily use client
and server payloads without maintaining elaborate state or
dynamically rewriting payloads, we remove the echoed address
from the server response since it is not required for correct
protocol operation. An effect of our sanitization is that we
may underreport the levels of false alarms generated by the
NIDS that we evaluate.

e Content Aware Traffic Generation via Harpoon. We
wrote a new traffic generation plug-in for Harpoon [16] to
execute the application state machines and transmit sanitized
payloads. Control of state machine processing is done on
Harpoon clients. Harpoon servers simply respond to requests
to send a certain number of packets from specified application
payload pools.

The exchange of application-layer payloads according to
a given service automaton is done using standard user-level

sockets, i.e., above the transport layer. Benign traffic streams
produced by Trident are therefore targeted at intrusion de-
tection systems focused on layers above the transport layer.
Presently, we do not explicitly account for non-malicious
transport-layer anomalies that may have been present in a
trace captured in a live network, such as misconfigurations
or implementation bugs. Our malicious traffic generators,
described next, include exploits that target both network and
transport layers, as well as higher layers.

B. Attack Traffic Generation

e General attack traffic creation. MACE is a modular
attack composition framework that consists of three primary
components: (i) exploit, (if) obfuscation, and (iii) propagation,
as well as a number of functions to support interpretation,
execution, and exception handling of attack profiles. For this
work, we extended the existing set of exploits in MACE from
5 to 21 attacks [4] and enhanced its ability to modulate attack
volumes. A taxonomy of available MACE exploits is found
in [5]. Our objective is not to provide a complete attack
database for intrusion testing, but to provide a spectrum of
attacks that exercise NIDS in sufficiently diverse ways and
to support a set of basic building blocks that can be used to
create additional (and perhaps as yet unseen) attack vectors.

e DARPA attack recreation. The DARPA data set provides
a collection of 58 different attack instances. A catalog of
these attacks is found in [5]. To extend the utility of Trident,
we added the capability to dynamically replay these attacks.
We began by developing a tool called split-darpa to
distill labeled attacks from the mixed traces. Due to possible
inaccuracies in the labeling, split-darpa was able to
automatically isolate 56/58 attacks in the data set. Next, we
developed the ability to perform dynamic replay of attack
traces with the tool attack-replay. One of the key aspects
of this effort is that for TCP attacks, reassembly of payloads is
done before sending the packets through TCP sockets. All state
is maintained at the client and appropriate server responses
are fed to the server through an out-of-band control channel
in a timely manner. For UDP and ICMP packets, the traffic is
transmitted through raw sockets.

C. Test Methodology

The objective of laboratory-based experiments reported in
§[V]is to demonstrate the utility of Trident by evaluating the ef-
fectiveness of specific NIDS configurations along dimensions
of packet diversity (content and mix) and traffic volume.

Test Setup. The NIDS we evaluated in our experiments
were Bro (version 0.9a8) and Snort (version 2.3.0). For Bro,
we used the default brolite.bro policy, and for Snort, we
used the default snort.conf. We included a third NIDS
configuration consisting of Snort (version 2.3.0) with a recent
snapshot of signatures from Bleeding Snort [17]. Each NIDS
ran on a separate workstation with a 2 GHz Intel Pentium 4
processor, 1 GB of RAM, and Intel/PRO 1000 network cards.

FreeBSD 5.1 was installed on each machindl]

The three NIDS hosts were connected to a Cisco 6500
enterprise switch/router. Harpoon, MACE, and attack-replay
traffic generators were also connected to this switch, which
was configured in such a way that the three NIDS received
all traffic sent between the traffic generation hosts. We used
two large (2'°) address spaces as “internal” and “external” net-
works, configuring interface aliases on each traffic generation
host.

We ran three sets of experiments. The first set of experi-
ments was designed to establish a baseline of alarm behavior
for each NIDS. We first generated low (5 Mb/s) rates of benign
traffic using the DARPA data set and a sanitized packet trace
from our department border router (CSL trace). We traced
all traffic during these experiments and used the traces in an
offline manner to produce a baseline set of alarms generated
by the three NIDS configurations. Similarly, for each exploit
produced by MACE and each exploit from the DARPA data
set, we generated a baseline set of alarms for the three NIDS
configurations.

In the second set of experiments, we altered the mix of flow
volumes between benign traffic generated by Harpoon, and
malicious traffic generated by MACE (CSL) or attack-replay
(DARPA). To effect different mixes, we kept the benign traffic
level constant at about 20 Mb/s, while introducing different
levels of malicious flows. The specific mixes we used were
100% benign flows, 90% benign flows, 50% benign flows,
and 10% benign flows. Below, we refer to these test setups as
mix 100, mix90/10, mix50/50, and mix10/90, respectively.

In the third set of experiments, we used three different levels
of traffic volumes. We tuned Harpoon to generate roughly 20
Mb/s, 40 Mb/s, or 60 Mb/s for each of the CSL and DARPA
data sets. For each traffic volume level, we tuned MACE or
attack-replay to produce approximately 2 Mb/s, 4 Mb/s, and 6
Mb/s of aggregate attack traffic, respectively. Below, we refer
to these tests exploring the effect of traffic volumes as vol20,
vol40, and vol60.

We ran each experiment for 15 minutes. On each NIDS
host, we measured CPU and memory usage every 5 seconds
using vmstat. We also took note of packet drops reported
by each NIDS upon shutdown.

Evaluating Results. Using the results of running the ma-
licious traffic in the baseline experiments, we constructed
representations of the types and number of alarms at each
NIDS we expected to observe for each exploit. For the second
and third sets of experiments, we recorded the number of times
an individual exploit was executed by MACE or attack-replay.
We then were able to compare the alarms produced by each
NIDS with what we would expect, given the specific exploits
launched over the duration of the test. We wrote a script to
automatically process this representation of expected alarms
along with the actual log files produced by a NIDS during

'On each host we modified the kernel parameters debug.bpf_bufsiz
to 4194304 and debug.bpf maxbufsize to 8388608 as suggested in the
Bro documentation. Snort presumably can benefit from this change as well
so we applied the change to each NIDS host.

a given test. The script reported the set of alarms produced
by the NIDS, along with a frequency of occurrence, and the
expected number of occurrences. We used these counts to
generate relative alarm efficiency and effectiveness values [18].
Efficiency is defined as Efficiency = %, and is a
measure of false positive occurrence, where a value of 1
means that there are no false positives and a value of 0 means
that all alarms are false positives. Effectiveness is defined as
Effectiveness = % is a measure of false negatives,
where a value of 1 means there are no false negatives (i.e., all

alarms that should have occurred did occur).

V. LABORATORY-BASED IDS EVALUTION

We illustrate the utility of our framework through results
of an experimental evaluation of Bro, Snort and Bleeding
Snort performance under varying traffic content, mix and
volume. While these results substantiate the effectiveness of
the measurement tools and the potential of the methodology,
they should be interpreted with the following two caveats:

1) The results are limited by the representativeness and
diversity of our protocol automata.

2) Our goal is to conduct black-box evaluation of NIDS
performance. So we do not perform in-depth analysis of
behavioral causalities.

As a result, these results are not intended to be used as
a head-to-head comparison of the systems or their rule sets.
However they are valuable in that they demonstrate effects of
varying benign and malicious traffic content, mix and volume,
and establish the feasibility of our approach.

Baselining Benign Traffic / Evaluating effect of inter-
leaving. An important question is how payload interleaving,
the process of random selection of packets from individual
payload pools based on the states in each service automaton,
affects alarm characteristics. In particular, it is important to
demonstrate that no legitimate alarms are introduced due to
data consistency issues.

We counted the number of unique alarms produced by the
three NIDS setups in both offline and online configurations
using the CSL and DARPA data sets. Results are found in [5].
For the offline setup, we ran each NIDS configuration using
each trace after grooming, but prior to payload classification
and sanitization so that the original flows (including IP and
TCP headers) were left intact. In the online setup, we used
Trident to generate flows using the groomed, classified, and
sanitized traces. We saw that the number of unique alarms
is consistently less for the online test. This effect is caused
by the conservative nature of our sanitization process and by
the fact that our laboratory tests are run in a relatively simple
environment. Furthermore, the set of alarm types generated in
the online tests is a subset of the alarm types produced in the
offline setup. Alarms unique to the offline tests are most often
related to transport, addressing, and routing (i.e., layers 3 and
4) and the common alarms are application-related.

Baselining Malicious Traffic. We compiled summaries of
the alerts generated by Bro, Snort, and Bleeding Snort for
each instance of the 21 MACE and 52 DARPA attacks, details

are found in [5]. We used this data to derive expected alarm
types and frequencies for categorizing alarms, e.g., as false
positives. Certain exploits in these tables highlight some of
the main differences between Bro and Snort, i.e., Bro is gen-
erally concerned with stateful monitoring of connections and
applications, while Snort is oriented toward detecting specific
conditions in individual packets (such as the presence of a
particular string). For example, a specific string in the winnuke
exploit in generates 10 alarms in Snort and Bleeding Snort
but does not trigger any Bro alarms. Similarly, unexpected
SMTP state produced during the mailbomb exploit triggers
450 alarms in Bro, but 0 in Snort and 60 in Bleeding Snort.

Evaluating effect of Traffic Mix. Tests using a range of
benign and malicious traffic mixes demonstrate a remarkable
diversity in the behavior of Bro, Snort, and Bleeding Snort.
Figure [2] shows CPU utilization and packet loss results for
the CSL/MACE data set. Results for the DARPA/attack-replay
data set are found in [5]. We see that as the overall flow
composition becomes dominated by malicious flows, CPU
utilization shows a clear increasing trend. We also see a
difference caused by the application mix of benign traffic
flows. For the CSL data set with no malicious flows (mix100),
we see that Bleeding Snort consumes more CPU time than
Bro, but that the opposite occurs for the DARPA data set with
no malicious flows.

Packet loss behavior between the CSL and DARPA traffic
is quite different for both Bro and Snort/Bleeding Snort. For
both Snort variants, there is always some occurrence of packet
loss. (We are currently investigating the cause of this high
level of packet loss even with relatively low CPU utilization,
which is consistent with previously reported experiments [4].)
On the other hand, Bro appears quite resilient to dropping
packets until it consumes all CPU resources, at which point
loss becomes endemic.

Figure [3] shows alarm effectiveness and efficiency over the
range of benign and malicious flow mixes for the CSL/MACE
data set. Results for the DARPA/attack-replay data set are
found in [5]. We see that for the CSL data set alarm effective-
ness drops as the traffic mix becomes dominated by malicious
flows (false negatives increase). This effect is mainly caused
by packet drops experienced by Bro and both Snort variants.
False positives are relatively low across all mixes for the CSL
data set, with the fewest false positives coming when most of
the traffic is malicious (mix10/90).

Evaluating Effect of Volume. To understand the effect of
volume in NIDS performance, we conducted experiments with
traffic rates of 20, 40 and 60 Mbps. In these experiments, the
mix of malicious to benign traffic was fixed at 10/90. Figure
shows the packet drops and CPU utilization for the three
systems under different volumes for the CSL/MACE data set.
On all systems, an increase in traffic volume directly affects
CPU utilization. Interestingly, while Bro seems quite resilient
to packet drops with the CSL data set, the DARPA data set,
which is dominated by HTTP traffic, has a substantial impact
on Bro performance (see [5]). Snort’s drop rates seem to
degrade less intensely with volume for this data set.

100
]
100
]

= bro B bro
o snort o snort
_| O bleeding snort _| O bleeding snort

: i1

mixI00 mix30.10 MxS0.50 mix10.80 vol2s

80
80

40

cpu utilization
40

packet loss %

]

voI7s mixI00 mix30.10 MKS0.50 mx100 wvol2s volS0 vol7S

traffic scenario traffic scenario

Fig. 2. CPU utilization (left) and packet loss (right) measurements for Bro,
Snort, and Bleeding Snort on CSL traffic setup.

In Figure [3] we show the effectiveness and efficiency of
the systems in the volume experiments for the CSL/MACE
data set. Efficiency and effectiveness do not seem to be
highly correlated with volume of traffic although counts of
alarms do increase with volume. Second, while we do not
show the results here, it seems that Snort’s signature set has
been to tuned to detect DARPA attacks much better than
Bro. Bro generates few alarms on the DARPA data, and
as a result even though Bro produces few false alarms its
efficiency and effectiveness are poor. For the CSL traffic, Bro’s
efficiency and effectiveness are significantly better. Another
observation is that the Bleeding Snort rule set, which is a
superset of the Snort rule set, seems to have lower efficiency
and effectiveness. As we would expect, the volume of baseline
alerts in Bleeding Snort is higher than for Snort. As a result,
Bleeding Snort has a greater chance of missing true alarms
during packet drops but also a larger chance for false positives,
which decreases effectiveness.

VI. CONCLUSION

In this paper, we describe an online traffic generation frame-
work for robust evaluation and tuning of network intrusion de-
tection systems. The objective of our work is to create a system
capable of generating realistic, diverse streams of both benign
and malicious traffic. We describe a methodology for creating
benign traffic that is based on protocol specific automata and
includes the use of packet payloads culled from live traces. We
argue that this approach enables highly representative testing
and will be quite useful for security administrators seeking
to tune systems for their own environments. We realize our
traffic generation framework in a tool set we call Trident. We
demonstrate the utility of Trident through a set of experiments
on open-source NIDS conducted in a controlled laboratory
setting. The results of these experiments indicate that content,
mix and volume have tremendous effect on NIDS performance
and demonstrate Trident’s capability to expose a range of
diverse behavior on modern NIDS.

REFERENCES

[1] J. McHugh, “Testing Intrusion Detection Systems: A critique of the 1998
and 1999 DARPA Intrusion Detection System Evaluations as performed

= bro @ snort O bleeding snort o _ ® bro @ snort O bleeding snort
— ™ — — —
2 [=3 [=3
>
s o | 2 o |
R g s
2 =
o < <
aq:) S () S
N N
<3 <3
o
J L L L L L = L L
MH010 MOS0 mx080 voZs vobo oS MH010 MOS0 mxi080 voZs vobo oS
traffic scenario traffic scenario
Fig. 3. Alarm effectiveness (left) and efficiency (right) for Bro, Snort, and

Bleeding Snort on CSL traffic setup.

by Lincoln Laboratory,” ACM Transactions on Information and System
Security, vol. 3, no. 4, November 2000.

[2] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D. McClung,
D. Weber, S. Webster, D. Wyschogrod, R. Cunningham, and M. Ziss-
man, “Evaluating Intrusion Detection systems: 1998 DARPA Off-line
Intrusion Detection Evaluation,” in Proceedings of IEEE Symposium on
Security and Privacy, Oakland, CA, May 1998.

[3] R. Lippmann, J. Haines, D. Fried, J. Korba, and K. Das, “The 1999
DARPA Off-Line Intrusion Detection Evaluation,” in Proceedings of
the Symposium on Recent Advances in Intrusion Detection (RAID),
Toulouse, France, October 2000.

[4] J. Sommers, V. Yegneswaran, and P. Barford, “A Framework for
Malicious Workload Generation,” in Proceedings of ACM SIG-
COMM/USENIX Internet Measurement Conference, Taormina, Italy,
October 2004.

[5] ——, “Toward Comprehensive Traffic Generation for Online IDS Eval-
uation,” University of Wisconsin-Madison, Tech. Rep. 1525, October
2005.

[6] “THOR: A Tool to Test Intrusion Detection Systems by Variations of
Attacks,” http://thor.cryptojail.net/, 2005.

[71 D.Mutz, G. Vigna, and R. Kemmerer, “An Experience Developing and
IDS Simulator for Black-box Testing of Network Intrusion Detection
Systems,” in In Proceedings of ACSAC, Las Vegas, NV, December 2003.

[8] Nessus, http://www.nessus.org, 2005.

[9] “Metasploit project,” http://www.metasploit.com, 2005.

[10] Exploitation Framework, http://www.securityforest.com/wiki/-
index.php/Exploitation_Framework, 2005.

S.-S. Hong and S. F. Wu, “On Interactive Traffic Replay,” in Proceedings
of the Symposium on Recent Advances in Intrusion Detection (RAID),
Seattle, WA, September 2005.

L. Rossey, R. Cunningham, D. Fried, J. Rabek, R. Lippman, J. Haines,
and M. Zissman, “LARIAT: Lincoln Adaptable Real-Time Information
Assurance Testbed,” in Proceedings of IEEE Aerospace Conference, Big
Sky, Montana, March 2002.

“Skaion’s Traffic Generation System
http://www.skaion.com/products/index.html, 2005.

M. Mahoney and P. Chan, “An Analysis of the 1999 DARPA/Lincoln
Laboratory Evaluation Data for Network Intrusion Detection,” in Pro-
ceedings of the Symposium on Recent Advances in Intrusion Detection
(RAID), Pittsburgh, PA, September 2003.

A. Valdes and K. Skinner, “Adaptive, model-based monitoring for cyber
attack detection,” in Proceedings of the Symposium on Recent Advances
in Intrusion Detection (RAID), Toulouse, France, October 2000.

J. Sommers and P. Barford, “Self-Configuring Network Traffic Gen-
eration,” in Proceedings of ACM SIGCOMM Internet Measurement
Conference, Taormina, Italy, October 2004.

“BleedingSnort,” http://www.bleedingsnort.com, 2005.

S. Staniford, J. Hoagland, and J. McAlerney, “Practical Automated
Detection of Stealthy Portscans,” Journal of Computer Security, vol. 10,
no. 1-2, 2002.

(11]

[12]

[13] (TGS),”

[14]

[15]

(16]

[17]
[18]

	Introduction
	Related Work
	Constructing a Benign Trace
	The Trident System
	Benign Traffic Generation
	Attack Traffic Generation
	Test Methodology

	Laboratory-based IDS Evalution
	Conclusion
	References

