
COSC 460 Lecture 14:
Transactions 1

Professor Michael Hay
Fall 2018

 1

Architecture of DBMS

 2

Attribute-level inconsistency

 3

update college
set enrollment = enrollment + 100
where cname = ‘colgate’

Example 1

S1:

concurrent with…

update college
set enrollment = enrollment + 150
where cname = ‘colgate’

S2:

Tuple-level inconsistency

 4

update apply
set major = ‘cs’
where sid = 123

Example 2

S1:

concurrent with…

update apply
set decision = ‘y’
where sid = 123

S2:

Table-level inconsistency

 5

update apply
set decision = ‘y’
where sid in (select sid
 from student where gpa > 3.9)

Example 3

S1:

concurrent with…

update student
set gpa = (1.1) * gpa
where sizehs > 2500

S2:

Example: Alice and Kate both
have GPA = 3.8 but are from
“large” high schools (> 2500
students).

Inconsistent outcome: Alice
rejected; Kate accepted!

Multi-statement
inconsistency

 6

insert into archive (select *
 from apply
 where decision = ’n’);
delete from apply where decision = ‘n’;

Example 4

Group 1:

concurrent with…

select count(*) from apply;
select count(*) from archive;Group 2:

Concurrency and
inconsistency

 7

update R
set A = A+1

Exercise

S1:

concurrent with…

update R
set A = 2*AS2:

Instructions:
~1 minute to
think/answer on
your own; then
discuss with
neighbors; then
I will call on one
of you

Give an example of an
inconsistent state that could
arise from concurrently
executing the two statements
shown. Suppose R is a
relation with a single attribute A
and two tuples, as shown
below. R(A)

5
6

Concurrency &
Inconsistency

• In previous examples, inconsistency was caused by
concurrency

• Goal: execute sequence of SQL statements so they
appear to be running in isolation

• Solutions

• Simple (but bad): execute in isolation (serial order)

• Better: enable concurrency whenever safe to do so
(locking, details soon!)

 8

Inconsistency  
due to system failure

 9

insert into archive (select *
 from apply
 where decision = ’n’);
delete from apply where decision = ‘n’;

Example 5

Group:

Suppose system crashes after
insert but before delete?
Given what you know, explain how changes
made by the insert could be lost even though
the crash happened after insert “completed.”

Inconsistency and failure
• In previous example, inconsistency was caused

by system failure

• Goals:

• Guarantee “all or nothing” execution

• Guarantee that changes persist in database

• Solution: logging (details later) + stable storage

 10

Transactions
• Transaction a sequence of SQL operations treated as a unit.

• Transactions appear to run in isolation

• Transaction either runs to completion or not at all

• ACID Properties

• Atomicity

• Consistency

• Isolation

• Durability

 11

BEGIN TRANSACTION;
insert into archive
(select *
 from apply
 where decision = ’n’);
delete from apply
where decision = ’n’;
COMMIT;

ACID properties
• Isolation: varying degrees of isolation supported in

DBMSs (e.g., “REPEATABLE READ”, “READ
COMMITTED”)

• We will focus on serializability

• Serializability: operations from different
transactions may be interleaved but execution must
be equivalent to some serial order

 12

Isolated transactions

 13

update college
set enrollment = enrollment + 100
where cname = ‘colgate’

Example 1

T1:

concurrent with…

update college
set enrollment = enrollment + 150
where cname = ‘colgate’

T2:

Result is same whether
T1 then T2 or T2 then T1.

Isolated transactions

 14

update apply
set major = ‘cs’
where sid = 123

Example 2

T1:

concurrent with…

update apply
set decision = ‘y’
where sid = 123

T2:

Result is same whether
T1 then T2 or T2 then T1.

Isolated transactions

 15

update apply
set decision = ‘y’
where sid in (select sid
 from student where gpa > 3.9)

Example 3

T1:

concurrent with…

update student
set gpa = (1.1) * gpa
where sizehs > 2500

T2:

Result can be different!
T1 then T2: Kate and Alice rejected
T2 then T1: Kate and Alice accepted

While different, both are consistent.

Isolated transactions

 16

insert into archive (select *
 from apply
 where decision = ’n’);
delete from apply where decision = ‘n’;

Example 4

T1:

concurrent with…

select count(*) from apply;
select count(*) from archive;T2:

Result can be different!
T1 then T2: archive count includes
updated records
T2 then T1: archive count does not
include updated records

Poll

 17

update R
set A = A+1

S1:

concurrent with…

update R
set A = 2*AS2:

Suppose R is a relation with a
single attribute A and two tuples,
as shown. Suppose the two
statements shown are executed
in isolation. Which of the
following states is impossible?
A. {11,13}
B. {12, 14}
C. {11,14}
D. {12,13}
E. more than one of above

R(A)
5
6

Instructions: I will give you 1-2
minutes to think on your own.
Vote 1.
Then you will discuss w/ neighbor
(1 min).
Vote 2.
Then we’ll discuss as class.

ACID properties

• Durability: if system crashes after transaction
commits, all effects of transaction persist in
database.

• Atomicity: each transaction is "all-or-nothing", it
either runs to completion and commits, or it fails
and all partial changes are undone.

 18

Atomic transactions

 19

BEGIN TRANSACTION;
insert into archive (select *
 from apply
 where decision = ’n’);
delete from apply where decision = ’n’;
COMMIT;

Example 5

Suppose system crashes after
insert but before delete?

Rollback: undoing
effects of a partially

completed transaction.

Without
durability

 20

update R
set A = A+1

Exercise

S1:

concurrent with…

update R
set A = 2*AS2:

Suppose our DBMS supports
atomicity and isolation but not
durability. Which of the following
states of R is not possible?
A. {11,13}
B. {12, 14}
C. {10,12}
D. {11,12}
E. more than one of above

R(A)
5
6

Assume R is a relation with a single
attribute A and two tuples, as show.

Instructions: I will give you 1-2
minutes to think on your own.
Vote 1.
Then you will discuss w/ neighbor
(1 min).
Vote 2.
Then we’ll discuss as class.

ACID properties
• Consistency: if DB is in a consistent state when

each transaction starts, it will be in consistent state
when transaction ends

• User responsible for writing semantically correct
transactions (i.e., consistent with real world)

• If transaction is consistent and DBMS ensures
serializability, then DB always appears to be in a
consistent state.

 21

