
COSC 460 Lecture 16:
Transactions 3: Two

Phase Locking
Professor Michael Hay

Fall 2018

 1

Transactions
• Transaction a sequence of SQL operations treated as a unit.

• Transactions appear to run in isolation

• Transaction either runs to completion or not at all

• ACID Properties

• Atomicity

• Consistency

• Isolation

• Durability

 2

BEGIN TRANSACTION;
insert into archive
(select *
 from apply
 where decision = ’n’);
delete from apply
where decision = ’n’;
COMMIT;

RECAP

Isolation
• Goal: develop ways to Isolation. We will worry

about A,C, and D later.

• Plan:

1. See what isolation looks like (serializable
schedules, confict-serializable schedules, …)

2. See how to ensure isolation (locking protocols)

 3

RECAP

Serializable schedules

• Schedule S’ is serializable if it is equivalent to
some serial schedule S.

 4

RECAP

Conflict serializable

• A schedule S’ is conflict serializable if it is conflict
equivalent to SOME serial schedule S.

• Conflict equivalent: every pair of conflicting
statements is ordered in the same way

 5

RECAP

Conflict equivalent
• Schedule S is conflict equivalent to S’ if every pair

of conflicting statements is ordered in the same way

 6

T1 T2
R(A)
W(A)

R(A)
W(A)

R(B)
W(B)

R(B)
W(B)

T1 T2
R(A)
W(A)
R(B)
W(B)

R(A)
W(A)
R(B)
W(B)

RECAP

Conflict equivalent
• Schedule S is conflict equivalent to S’ if every pair

of conflicting statements is ordered in the same way

 7

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

R(B)
W(B)

Not conflict equivalent
to any serial schedule

RECAP

Concurrency control
• How ensure serializability?

• Two high-level strategies

• Optimistic: detect “bad” schedules and abort
offending transactions

• Pessimistic: prevent “bad” schedules through
locking protocol

 8

Lock Management
• Each “item” has lock.

• Responsibilities of transaction:

• Request lock before R or W

• Wait until request is granted

• Release lock when done

• Responsibilities of lock manager:

• Grant/deny requests

• Maintain status of locks and lock requests (details later)

 9

In ColgateDB:  
“Item” = page

Example

• T1 transfers between
accounts

• T2 displays total account
balance

• Is this schedule serializable?

 10

T1 T2
L(A)

L(A)
A=A+100 |

U(A) |
L(B)

print(A+B)
U(A), U(B)

L(B)
B = B - 100

U(B)

Locking alone is
not enough! Need
locking protocol.

Instructions: ~1 minute to think/
answer on your own; then discuss with
neighbors; then I will call on one of you

Two phase locking
• 2PL: a transaction cannot acquire additional locks

once it has released any lock

• Growing phase (acquiring locks)

• Shrinking phase (releasing locks)

• Lockpoint: time at which transaction T acquired its
last lock

 11

Exercise

• Is this schedule feasible
under the 2PL protocol?

• If not, why not?

• If so, is it a serializable
schedule?

 12

Instructions: ~1 minute to think/
answer on your own; then discuss with
neighbors; then I will call on one of you

T1 T2
L(A)

L(A)
A=A+100 |

U(A) |
temp = A

U(A)
L(B)

L(B)
| temp += B
| U(B)

B = B - 100
U(B)

print(temp)

Exercise

• T1 and T2 are the same as in
the previous example except for
the order of the operations in
red.

• Is this schedule feasible under
the 2PL protocol?

• If not, why not?

• If so, is it a serializable
schedule?

 13

Instructions: ~1 minute to think/
answer on your own; then discuss with
neighbors; then I will call on one of you

T1 T2
L(A)

L(A)
A=A+100 |

L(B) |
U(A) |

temp = A
L(B)

B = B - 100 |
U(B) |

U(A)
temp += B

U(B)
print(temp)

2PL → Conflict serializability

• Any 2PL schedule is conflict equivalent to the
schedule where transactions are ordered by
lockpoint

• Proof sketch: proof by contraction. Suppose
schedule is 2PL but not conflict serializable.

 14

Increasing concurrency
• Observation: reads do

not conflict with each
other

• Associate “permission”
with each lock request:

• R only → shared lock

• R&W→ exclusive lock  

• Upgrades/downgrades

• Upgrade: have shared,
get exclusive

• Downgrade: have
exclusive, allow shared

• 2PL: upgrade only
during growing;
downgrade only during
shrinking

 15

Lock Requests and Priority

• T3 is requesting a
shared lock while T1 is
waiting on an upgrade.
Should T3 be granted
the lock?

 16

T1 T2 T3
S(A)

S(A)

R(A)
X(A)

|
|
| S(A)

Example 1

Concern with granting
lock to T3: T1 might
starve. Make T3 wait.

Lock Requests and Priority

• T1 is requesting an
upgrade lock while T3 is
waiting on an exclusive.
Should T1 be granted
the lock?

 17

T1 T2 T3
S(A)

S(A)
X(A)

R(A) |
X(A) |

| R(A) |
| print(A) |
| U(A) |

Example 2

Concern with making
T1 wait: deadlock.

Lock management
• Lock Table: maps item to

LockTableEntry

• LockTableEntry

• Current lock type: shared/
exclusive/none

• Current lock holders

• Requests: list of (transaction,
permissions) pairs 
 
 
 
 

• Handling lock request:

• If request is upgrade, put at front
of queue; else, put at end

• Only transaction at front of
queue can be granted lock!

• Whether to grant lock depends
on current lock type/holders, and
permissions being requested

• If granted: update entry, check
request queue

• Handling lock release: update entry,
check request queue

 18

ColgateDB: transactions manage
their own requests via shared lock
table. We do not have separate
thread “managing” lock table.

Lock Requests and Priority

• T3 is requesting a
shared lock while T1 is
waiting on an upgrade.
Should T3 be granted
the lock?

 19

T1 T2 T3
S(A)

S(A)

R(A)
X(A)

|
|
| S(A)No. T1 is at front of

queue. T3 must wait.

Example 1
Revisited

Lock Requests and Priority

• T1 is requesting an
upgrade lock while T3 is
waiting on an exclusive.
Should T1 be granted
the lock?

 20

T1 T2 T3
S(A)

S(A)
X(A)

R(A) |
X(A) |

| R(A) |
| print(A) |
| U(A) |

Yes! T1 upgrade request
jumps to front of queue.
T1 gets lock when T2
releases. T3 waits for T1.

Example 2
Revisited

Deadlock

• T1 transfers money from
B to A.

• T2 transfers money from
A to B.

 21

T1 T2
L(A)

L(B)
A=A+100

B=B+50
L(A)

L(B) A=A-50
B=B-100 U(A),U(B)

U(A), U(B)
Deadlock! (Grayed out
events never happen)

