
COSC 460 Lecture 17:
Transactions 4: Deadlock

Professor Michael Hay
Fall 2018

 1

Review: Two phase locking

• 2PL: a transaction cannot acquire additional locks
once it has released any lock

• Growing phase (acquiring locks)

• Shrinking phase (releasing locks)

• 2PL guarantees conflict serializability

 2

Deadlock

• T1 transfers money from
B to A.

• T2 transfers money from
A to B.

 3

T1 T2
L(A)

L(B)
A=A+100

B=B+50
L(A)

L(B) A=A-50
B=B-100 U(A),U(B)

U(A), U(B)
Deadlock! (Grayed out
events never happen)

Strategies for deadlock
• Timeout: if Ti waiting for “long” time, abort.

• Hard to tune. What is right amount to wait?

• Prevention: preemptively abort transactions in
situations that could lead to deadlock
• Conservative: more aborts than necessary.

• Detection: with each new lock request, check
whether it creates deadlock.
• Expensive: adds overhead to every request.

 4

Prevention
• Each Ti assigned timestamp. Older transactions given

higher priority.

• Suppose Ti requests lock held by Tj

• Options available to requestor: wait, abort, force holder to
abort.

• Behavior depends on…

• Who is older? Requestor or holder?

• Policy: wait-die vs. wound-wait.

 5

Prevention policies

• Wait-die: if requestor is older than holder, it wait;
else it aborts.

• Wound-wait: if requestor is older than holder, it
“wounds” (aborts) holder; else it waits.

 6

Deadlock Prevention

• Assume txn number
acts as timestamp (T1 is
older)

• Under wait-die, what
happens?

 7

T1 T2
L(A)

L(B)
A=A+100

B=B+50
L(A)

L(B) A=A-50
B=B-100 U(A),U(B)

U(A), U(B)T2 is requestor for L(A)
and T1 is holder. Under
wait-die, T2 aborts.

Deadlock Prevention

• Assume txn number
acts as timestamp (T1 is
older)

• Under wound-wait, what
happens?

 8

T1 T2
L(A)

L(B)
A=A+100

B=B+50
L(A)

L(B) A=A-50
B=B-100 U(A),U(B)

U(A), U(B)T2 waits on T1 for A. T1 is
requestor for L(B) and T2
is holder. Under wound-
wait, T1 kills T2.

Instructions: ~1 minute to think/
answer on your own; then discuss with
neighbors; then I will call on one of you

Example

• With deadlock prevention schemes, if txn is
aborted and restarts, it does not get a new
timestamp. Instead it keeps its old timestamp.
Why is this important?

 9

Instructions: ~1 minute to think/
answer on your own; then discuss with
neighbors; then I will call on one of you

Detection

• “Waits for” graph

• Nodes: running or waiting transactions T1 , …, Tn

• Edge: Ti → Tj if Ti is waiting for a lock held by Tj.

• If graph has a cycle, then there is deadlock.

 10

Deadlock Detection

• Draw the waits-for graph
for this schedule.

• Is there a deadlock?

• If so, which txn should
be aborted?

 11

T1 T2 T3
S(A)

X(B)
S(B)

| S(C)
| X(C)
| | X(A)
| | |

Yes. There is a cycle:  
T3->T1->T2->T3. 
Several criteria can be used to decide which to
abort: youngest, fewest locks, least work, etc.

Instructions: ~1 minute to think/
answer on your own; then discuss with
neighbors; then I will call on one of you

Aborts, atomicity and
consistency

• When a transaction Ti aborts, we must undo any
changes Ti made to database.

• Goal: make it look as if transaction never
happened (atomicity)

• How might an abort of Ti affect other transactions
Tj? (Example on next slide.)

 12

Aborts and Consistency

• Assume Ti number is
timestamp (T1 is older)

• Under wound-wait, what
happens when T1
requests lock on C?

 13

T1 T2 T3
L(A)

L(B), L(C)
A=A+100

B=B+50
U(B)

L(B)
R(B)

L(C)
C=C-100 C=C-50

U(A) U(C)
U(C)

T1 wounds T2, causing it
to abort. But T3 read
data written by T2!! (T3
should be aborted, too.)

Schedules

• Recoverable schedule: if Tj reads value written by
Ti, then Ti commits before Tj commits.

• Cascade-less schedule: if Tj reads value written
by Ti, then Ti commits before Tj reads.

 14

Recoverability and Cascading
Aborts

• Is this schedule
recoverable?

• Is it cascade-less?

 15

T1 T2
X(A), X(B)
A=A+100

U(A)
X(A)

A=A*1.01
U(A)

Commit
R(B)

It is not recoverable.
What if T1 aborts after
reading B?

• Is this schedule
recoverable?

• Is it cascade-less?

 16

It is not cascade-
less. What if T1
aborts after reading
B?

T1 T2 T3

X(A), X(B)

A=A+100
U(A)

X(A)

A=A*1.01

U(A)

R(B) S(A)

Commit R(A)
Commit

Commit

Recoverability and Cascading
Aborts

Strict 2PL
• Strict 2PL: 2PL protocol with additional

requirement that all locks are release when the
transaction is completed.

• If all transactions follow Strict 2PL, then all
schedules will be…

• Conflict-serializable, and

• Cascade-less

 17

