
COSC 460 Lecture 18:
Recovery 1

Professor Michael Hay
Fall 2018

 1

Transactions

• Atomicity

• Consistency

• Isolation

• Durability

 2

Atomicity (and durability)
have to do with how the
DBMS handles failures

Architecture of DBMS

(Expected) Failures

• Aborted transaction

• System crash: CPU halts, RAM lost, disk ok

• Other kinds of failures are possible (like what?)…
but not directly addressed by DBMS recovery
system

 4

Operators
• IN(x): fetch page containing x from disk into RAM

• OUT(x): flush x’s page from RAM to disk

• R(x): do IN(x) if necessary, write value of x to local
variable

• W(x): do IN(x) if necessary, write value of local
variable x to x’s page (in RAM)

 5

Example shown on board

Key ideas and questions
• Key ideas

• Redundancy: store information twice

• Logging: record changes to DB in an append only log

• Key questions

1. What info is written to log?

2. What is logging protocol?

3. What is recovery protocol?

 6

Approaches
• Approaches

1. Undo logging

2. Redo logging

3. Undo/redo logging

• Why study three?

• The first two are flawed. The last one works — described in
reading and the one you will implement!

• Studying flaws of first two help explain complexity of last.

 7

Undo Logging

log DB

Uncommitted
changes made
to DB can be
rolled back
using log.

Redo 
Logging

log

DB

Committed
changes
recorded in log
can be used to
update lagging
DB.

Logged information
• Types of log records:

• Transaction start: <Ti, start>

• Update of data item A:  
<Ti, A, old value → new value >

• Compensating log record (CLR):  
<CLR, Ti, A, new value >

• Transaction end successfully: <Ti, commit>

• Transaction end unsuccessfully: <Ti, abort>

 10

Possible bad states

• Bad State #1: DB changes flushed to disk, but log
is still in RAM.

• Bad State #2: Transaction commit flushed to log,
but DB changes still in RAM.

• Must devise logging protocol to avoid bad states.

 11

Undo logging protocol

1. For each DB update, generate log record

2. Write ahead logging: before OUT(X), flush log
records up to and including modifications of X.

3. Force: before <Ti, commit> to log, flush all
pages dirtied by Ti

 12

Undo recovery protocol
1. Let losers be transactions with start but no

commit/abort

2. For each log record from last to first:

1. If record was update  
<Ti, A, old → new >  
and Ti is loser, then X = old, W(X), OUT(X)

3. For each Ti in losers, write <Ti, abort> to log

 13

Undo logging

Suppose a crash occurs and
the log and DB are as shown.
Use the undo recovery
protocol to restore the DB.

(Challenge) The log records
actually contain extra
information that is never used
during recovery. What is
extra?

 14

Instructions: ~1 minute to think/
answer on your own; then discuss with
neighbors; then I will call on one of you

DB
A: 16
B: 12

Log

<T1 start>

<T2 start>

<T3 start>

<T3 B 8"12>

<T1 A 8"16>

<T2 A 16"32>

<T3 commit>

Undo logging

[Same example as previous
question]

Recovery protocol does not
specify the order in which abort
log records should be written.

Suppose we we write abort in
order of transaction id from
smallest to largest. (So T1 before
T2.)

What could go wrong with this
example? (Hint: consider the
possibility of a crash during
recovery.)

 15

Log

<T1 start>

<T2 start>

<T3 start>

<T3 B 8"12>

<T1 A 8"16>

<T2 A 16"32>

<T3 commit>

Instructions: ~1 minute to think/
answer on your own; then discuss with
neighbors; then I will call on one of you

DB
A: 16
B: 12

Write out
abort
messages in
order from
last to modify
to first to
modify.

Exercise

Consider this log and imagine
executing the recovery
protocol. Something’s not
right. What? Hint: is this
schedule possible under 2PL?
Under strict 2PL?

 16

Log

<T1 start>

<T2 start>

<T2 A 8"16>

<T1 A 16"32>

<T1 commit>

DB
A: 32

The transaction schedule
that led to this log is
unrecoverable (T1 reads
data written by T2 but
commits before T2).

Instructions: ~1 minute to think/
answer on your own; then discuss with
neighbors; then I will call on one of you

Undo logging

• The main drawback of undo logging is the FORCE
requirement: DB changes must be flushed to disk
before commit.

 17

Redo 
Logging

log

DB

First two
same as
undo logging.

Redo logging protocol
1. For each DB update, generate log record

2. Write ahead logging: before OUT(X), flush log
records up to and including modifications of X.

3. Before Ti commits, flush log

4. No steal: before OUT(X), must write <Ti,
commit> to log

 19

Intuition: repeat history for
“winning” transactions.

Redo recovery protocol

1. Let winners be transactions with commit in log

2. For each log record from first to last:

• If record was update  
<Ti, A, old → new >  
and Ti is winner, then X = new, W(X), OUT(X)

 20

Redo logging

Suppose a crash occurs and
the log and DB are as shown.
Use the redo recovery
protocol to restore the DB.

(Challenge) Do the log
records contain extra
information that is never used
during recovery? If so, what
is extra?

 21

Instructions: ~1 minute to think/
answer on your own; then discuss with
neighbors; then I will call on one of you

DB
A: 8
B: 8

Log

<T1 start>

<T2 start>

<T3 start>

<T3 B 8"12>

<T1 A 8"16>

<T2 A 16"32>

<T1 B 12"18>
<T3 commit>

