
COSC 460 Lecture 19:
Recovery 2

Professor Michael Hay
Fall 2018

 1

Recap: Undo logging
protocol

1. For each DB update, generate log record

2. Write ahead logging: before OUT(X), flush log
records up to and including modifications of X.

3. Force: before <Ti, commit> to log, flush all
pages dirtied by Ti

 2

First two
same as
undo logging.

Recap: Redo logging
protocol

1. For each DB update, generate log record

2. Write ahead logging: before OUT(X), flush log
records up to and including modifications of X.

3. Before Ti commits, flush log

4. No steal: before OUT(X), must write <Ti,
commit> to log

 3

Recap: undo only and redo
only logging

• Write head logging: ensures log is always “ahead”
of DB.

• Disadvantage of undo only: if you can only undo,
must force database to write committed changes.

• Disadvantage of redo only: if you can only redo,
must prevent DB from writing uncommitted
changes (“no steal”).

 4

Undo/redo logging

• The logging protocol is simpler than that of undo or
redo.

• The recovery protocol is more complex.

 5

Undo/redo logging protocol

1. For each DB update, generate log record

2. Write ahead logging: before OUT(X), flush log
records up to and including modifications of X.

3. Before Ti commits, flush log

4. No steal: before OUT(X), must write <Ti,
commit> to log

 6

Drop “no steal”
requirement  
(that redo requires)!

No force requirement
(that undo requires)!

Undo/redo recovery protocol
• Two phases: redo, then undo

• Redo: “repeat history” including

• … both winners and losers

• … changes made during any prior recoveries

• Undo: rollback losers

• … and log changes made during rollback

 7

Initial version
written on board.
Full version is on
handout.

Undo/Redo logging

Suppose a crash occurs
and the log and DB are as
shown. Use the undo/
redo recovery protocol to
restore the DB.

 8

Instructions: ~1 minute to think/
answer on your own; then discuss with
neighbors; then I will call on one of you

DB
A: 32
B: 18

Log

<T1 start>

<T2 start>

<T3 start>

<T3 B 8!12>

<T1 A 8!16>

<T2 A 16!32>

<T1 B 12!18>
<T3 commit>

Why CLRs?
• CLR = “Compensation log record”

• Written during recovery by recovery manager

• Rationale: log records history, and undo is part of
that history

• It simplifies recovery (simple example shown on
board)

 9

Undo/Redo logging

Revisit previous example, but
suppose T2 started before T1.

Further suppose there is another
crash during recovery before the
second abort log record is written.

What goes wrong? Does this
point to a flaw in our recovery
protocol? Or is this example
unrealistic?

 10

Instructions: ~1 minute to think/
answer on your own; then discuss with
neighbors; then I will call on one of you

DB
A: 32
B: 18

Log

<T2 start>

<T1 start>

<T3 start>

<T3 B 8!12>

<T1 A 8!16>

<T2 A 16!32>

<T1 B 12!18>
<T3 commit>

Checkpoints

• Rationale:

• Simplify recovery: start from last checkpoint

• Allow for log truncation

• Checkpoint itself must be executed carefully to
ensure data isn’t lost.

 11

What happens during
checkpoint?

• Lock buffer pool

• Flush log

• Flush all (dirty) pages from buffer pool (why?)

• Write checkpoint record to log and flush log

• Includes list of active transactions

• Unlock buffer pool (why important to lock/unlock?)

 12

Undo/redo recovery protocol

 13

losers = { T_i such that T_i is active at checkpoint }

REDO phase

for each log record from checkpoint to last

if <T_i start>, add T_i to losers

if <T_i commit>, remove T_i from losers

if <T_i abort>, remove T_i from losers

if <T_i X old->new>, then

X = new

W(X)

OUT(X)

if <CLR T_i X val>, then

X = val

W(X)

OUT(X)

UNDO phase

for each log record from last to first

if <T_i X old->new> and T_i is a loser, then

X = old

W(X)

OUT(X)

write <CLR T_i X old>

if <T_i start> and T_i is loser, then

write <T_i abort>

remove T_i from losers

if losers is empty: break

2

Also provided
on handout.

Undo/Redo logging

Suppose a crash occurs and the
log is as shown. Assume the
undo/redo recovery protocol is
being used.

A. What statements are redone?

B. What statements are undone?

C. Which lines of this log file can
be safely truncated?

 14

Instructions: ~1 minute to think/
answer on your own; then discuss with
neighbors; then I will call on one of you

Log

1 <T1 start>

2 <T1 A 1!5>
3 <T1 commit>

4 <T2 start>

5 <T3 start>

6 <T2 A 5!10>

7 <T3 B 8!16>
8 checkpt {T2,T3}

9 <T3 B 16!32>
10 <T3 commit>

11 <T2 B 32!12>

Recovery vs. rollback

• Recovery: response to system crash

• Rollback: response to transaction being aborted.

• Rollback behaves the same was as “undo” phase
of recovery: aborted transaction = “loser”

 15

