
COSC 460 Lecture 2:
Data Storage

Professor Michael Hay
Fall 2018

Credits: Slides adapted from Gehrke, Franklin, Widom, Miklau, Kot, and possibly others 1

Recap
• Relational model: data “stored” in tables

• Tables are a logical description only;

• Relational model does not say anything about actual
physical storage

• Virtue of relational model is physical data independence:
application programs work at logical level with tables and
DBMS worries about details of mapping logical to physical
storage

• Example of abstraction, a key idea in computer science.

 2

Architecture of DBMS
Logical level

Physical level

 3

Heart and soul of CS lies here!
• Design good abstractions
• Engineer efficient implementations

so users of higher level abstraction
layer live happy lives!

Messy stuff

Today

• Dive down into messy details of physical storage

• Today: disk, files, buffer manager

• Monday: file formats (exciting!)

 4

Memory hierarchy

 5

Fig. 9.1 from Cow book

Storage hierarchy
Small, Fast

Big, Slow

Registers

On-chip Cache

On-Board Cache

RAM

SSD

Disk

Tape

Volatile

Non-Volatile

 6

Storing Data
• Requirements of DBMS: ability to…

• store large amounts of data,

• in storage medium that is reliable,

• obtain fast access to data.

• Another key factor: storage media cost

 7

Access speed

• Random access*

• Disk: 316 values/sec

• SSD: 1924 values/sec

• Memory: 36,700,000 values/sec

* Random is worst-case scenario for disks (more later) 8

Reliability

• Disk: very reliable

• SDD: pretty reliable but some issues with wear over
time (in write-intensive environments)

• RAM: volatile! when power goes out, so does data!

 9

Cost

For $1000, PCConnection
offers:

– ~0.08TB of RAM

– ~1TB of Solid State Disk

– ~19TB of Magnetic Disk

GB/$1000

1

10

100

1000

10000

100000

RAM SSD Magnetic Disk

 10

Current state
• Most Many DBMS running today store data on magnetic disks

• Rapid changes underway

•

 11

Durable Write Cache in Flash Memory SSD
for Relational and NoSQL Databases

Woon-Hak Kang
Sungkyunkwan University
Suwon, 440-746, Korea

woonagi319@skku.edu

Sang-Won Lee
∗

Sungkyunkwan University
Suwon, 440-746, Korea

swlee@skku.edu

Bongki Moon
Seoul National University

Seoul, 151-744, Korea
bkmoon@snu.ac.kr

Yang-Suk Kee
Samsung Semiconductor Inc.

Milpitas, USA, 95035
yangseok.ki@ssi.samsung.com

Moonwook Oh
Samsung Electronics

Hwasung, 445-701, Korea
mw.oh@samsung.com

ABSTRACT

In order to meet the stringent requirements of low latency
as well as high throughput, web service providers with large
data centers have been replacing magnetic disk drives with
flash memory solid-state drives (SSDs). They commonly use
relational and NoSQL database engines to manage OLTP
workloads in the warehouse-scale computing environments.
These modern database engines rely heavily on redundant
writes and frequent cache flushes to guarantee the atomicity
and durability of transactional updates. This has become
a serious bottleneck of performance in both relational and
NoSQL database engines.

This paper presents a new SSD prototype called DuraSSD
equipped with tantalum capacitors. The tantalum capacitors
make the device cache inside DuraSSD durable, and addi-
tional firmware features of DuraSSD take advantage of the
durable cache to support the atomicity and durability of
page writes. It is the first time that a flash memory SSD with
durable cache has been used to achieve an order of magni-
tude improvement in transaction throughput without com-
promising the atomicity and durability. Considering that the
simple capacitors increase the total cost of an SSD no more
than one percent, DuraSSD clearly provides a cost-effective
means for transactional support. DuraSSD is also expected
to alleviate the problem of high tail latency by minimizing
write stalls.

Categories and Subject Descriptors

H.2 [DATABASE MANAGEMENT]: Systems

∗This work was done while the author was visiting Samsung
Semiconductor Inc.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.

Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.

http://dx.doi.org/10.1145/2588555.2595632.

General Terms

Design; Reliability; Performance

Keywords

Atomicity; Durability; SSD; Durable Cache

1. INTRODUCTION
In the era of warehouse-scale computing, a large-scale ap-

plication runs on hundreds or thousands of servers equipped
with their own storage and networking subsystems. When
an application is made up of many tasks running in parallel,
completion of the application is often delayed by a few tasks
experiencing a disproportionate amount of latency, thus af-
fecting negatively the overall utilization of computing re-
sources as well as the quality of services. This latency prob-
lem will be aggravated further with an increasing number of
parallel tasks, because the variance of latencies in parallel
tasks is always amplified by the system scale.

This latency concern, known as high tail latency, poses
serious challenges for online service providers operating
warehouse-scale computers and data centers [9]. Studies on
the effect of increased server side delays show that users re-
spond sharply to the speed of web services and a slower user
experience affects long term behavior. For example, Ama-
zon found every 100ms of latency cost them one percent in
sales, and Google found an extra half second in search re-
sult generation dropped traffic 20 percent. Shopzilla found
a five-second speed-up resulted in a 25 percent increase in
page views, a 7 to 12 percent increase in revenue, a 50 per-
cent reduction in hardware [13].

In order to meet the stringent requirements of low latency
as well as high throughput, major web service providers have
been replacing magnetic disk drives with flash memory SSDs
in their data centers. Ebay witnessed 50% reduction in the
rack space and 78% drop in power consumption with 100
TB of flash memory drives replacing disk-based systems [12].
Such companies as Amazon, Apple, Dropbox, Facebook and
Google are also using solid-state storage in all the servers of
their data centers or moving in that direction [20, 21]. This
trend toward all-flash data centers has already begun and is
expected to be accelerated.

Despite all these exciting developments with flash memory
SSDs taking place in the warehouse-scale computing arenas,

Anti-Caching: A New Approach to
Database Management System Architecture

Justin DeBrabant Andrew Pavlo Stephen Tu
Brown University Brown University MIT CSAIL

debrabant@cs.brown.edu pavlo@cs.brown.edu stephentu@csail.mit.edu

Michael Stonebraker Stan Zdonik
MIT CSAIL Brown University

stonebraker@csail.mit.edu sbz@cs.brown.edu

ABSTRACT
The traditional wisdom for building disk-based relational database
management systems (DBMS) is to organize data in heavily-encoded
blocks stored on disk, with a main memory block cache. In order to
improve performance given high disk latency, these systems use a
multi-threaded architecture with dynamic record-level locking that
allows multiple transactions to access the database at the same time.
Previous research has shown that this results in substantial over-
head for on-line transaction processing (OLTP) applications [15].

The next generation DBMSs seek to overcome these limitations
with architecture based on main memory resident data. To over-
come the restriction that all data fit in main memory, we propose
a new technique, called anti-caching, where cold data is moved
to disk in a transactionally-safe manner as the database grows in
size. Because data initially resides in memory, an anti-caching ar-
chitecture reverses the traditional storage hierarchy of disk-based
systems. Main memory is now the primary storage device.

We implemented a prototype of our anti-caching proposal in a
high-performance, main memory OLTP DBMS and performed a
series of experiments across a range of database sizes, workload
skews, and read/write mixes. We compared its performance with an
open-source, disk-based DBMS optionally fronted by a distributed
main memory cache. Our results show that for higher skewed
workloads the anti-caching architecture has a performance advan-
tage over either of the other architectures tested of up to 9⇥ for a
data size 8⇥ larger than memory.

1. INTRODUCTION
Historically, the internal architecture of DBMSs has been pred-

icated on the storage and management of data in heavily-encoded
disk blocks. In most systems, there is a header at the beginning of
each disk block to facilitate certain operations in the system. For
example, this header usually contains a “line table” at the front of
the block to support indirection to tuples. This allows the DBMS to
reorganize blocks without needing to change index pointers. When
a disk block is read into main memory, it must then be translated
into main memory format.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 31st 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 14
Copyright 2013 VLDB Endowment 2150-8097/13/14... $ 10.00.

DBMSs invariably maintain a buffer pool of blocks in main mem-
ory for faster access. When an executing query attempts to read a
disk block, the DBMS first checks to see whether the block already
exists in this buffer pool. If not, a block is evicted to make room
for the needed one. There is substantial overhead to managing the
buffer pool, since blocks have to be pinned in main memory and the
system must maintain an eviction order policy (e.g., least recently
used). As noted in [15], when all data fits in main memory, the
cost of maintaining a buffer pool is nearly one-third of all the CPU
cycles used by the DBMS.

The expense of managing disk-resident data has fostered a class
of new DBMSs that put the entire database in main memory and
thus have no buffer pool [11]. TimesTen was an early proponent of
this approach [31], and more recent examples include H-Store [2,
18], MemSQL [3], and RAMCloud [25]. H-Store (and its com-
mercial version VoltDB [4]) performs significantly better than disk-
based DBMSs on standard OLTP benchmarks [29] because of this
main memory orientation, as well as from avoiding the overhead of
concurrency control and heavy-weight data logging [22].

The fundamental problem with main memory DBMSs, however,
is that this improved performance is only achievable when the database
is smaller than the amount of physical memory available in the sys-
tem. If the database does not fit in memory, then the operating
system will start to page virtual memory, and main memory ac-
cesses will cause page faults. Because page faults are transparent
to the user, in this case the main memory DBMS, the execution of
transactions is stalled while the page is fetched from disk. This is a
significant problem in a DBMS, like H-Store, that executes transac-
tions serially without the use of heavyweight locking and latching.
Because of this, all main memory DBMSs warn users not to ex-
ceed the amount of real memory [5]. If memory is exceeded (or
if it might be at some point in the future), then a user must either
(1) provision new hardware and migrate their database to a larger
cluster, or (2) fall back to a traditional disk-based system, with its
inherent performance problems.

One widely adopted performance enhancer is to use a main mem-
ory distributed cache, such as Memcached [14], in front of a disk-
based DBMS. Under this two-tier architecture, the application first
looks in the cache for the tuple of interest. If this tuple is not in the
cache, then the application executes a query in the DBMS to fetch
the desired data. Once the application receives this data from the
DBMS, it updates the cache for fast access in the future. Whenever
a tuple is modified in the database, the application must invalidate
its cache entry so that the next time it is accessed the application
will retrieve the current version from the DBMS. Many notable web

1942

(2013)(2014)

This course
• Focus on simplified model: memory and disk

• Dominant cost is I/O

• Why what you learn will endure…

• New technologies borrow lessons learned from previous technologies

• There will likely always be some form of memory hierarchy: fast but
volatile, slow but stable (this is true even for today’s main memory DBs!)

• Study design process of DBMS:

• Make modeling assumptions

• Design algorithms under those assumptions

 12

Anatomy of a disk
• Platters spin

• Arm assembly moved in/out to position
a head on desired track.

• Tracks under heads make a cylinder
(imaginary!)

• Only one head reads/writes at a time

• Block size is multiple of sector size
(which is fixed)

 13

Block layout
• Standard block size: 4K

• Where is “next” block?

• blocks on same track, followed by

• blocks on same cylinder, followed by

• blocks on adjacent cylinder

• Sequential access: reading blocks in
order according to notion of “next”

Platters

Spindle

Disk head

Arm movement

Arm assembly

Tracks

Sector

 14

• Time to access (read/write) a disk block:

• seek time (moving arms to position disk head on track)

• rotational delay (waiting for block to rotate under head)

• transfer time (actually moving data to/from disk surface)

• Seek time and rotational delay dominate.

• Seek time varies from about 1 to 20msec

• Rotational delay varies from 0 to 10msec

• Transfer rate is about 1msec per 4KB page

• Key to lower I/O cost: reduce seek/rotation delays!

• (Aside: if disk is shared, wait time can be a big factor too.)

Accessing a Disk Page

 15

Retrieval rates
• Disk: sequential access is 5 orders of magnitude faster

than random!

• Sequential access reasonably high throughput (compared
to SSD and RAM)

From A. Jacobs, “The Pathologies of Big Data”,
ACM Queue Magazine, July 2009 16

Recap

• Memory: fast but volatile (and expensive!)

• Disk: slow but stable (and cheap!)

• Disk: sequential access much faster than random
access (why?)

• DBMS tries to minimize I/O cost

 17

Poll
Requesting data from disks can be slow. What is a
technique that can be used to improve access speed?

1) Caching

2) Pre-fetching

3) Organize “related” data  
sequentially on disk

4) All of the above

 18

pollev.com/cosc460

Instructions: I will give
you 1-2 minutes to think
on your own.
Vote 1.
Then you will discuss w/
neighbor (1 min).
Vote 2.
Then we’ll discuss as
class.

Architecture
• File of Records

• Buffer Manager

• Disk space manager

• OS Filesystem

• Disk

 19

(details shown on board)

Poll
Which layer in DBMS architecture provides physical
data independence? If none do, choose the layer
that comes closest.

1) OS Filesystem

2) Disk Manager

3) Buffer Manager

4) File of Records

 20

pollev.com/cosc460

Instructions: I will give
you 1-2 minutes to think
on your own.
Vote 1.
Then you will discuss w/
neighbor (1 min).
Vote 2.
Then we’ll discuss as
class.

Buffer Manager
(details shown on board)

 21

Some terminology
• Disk Page – the unit of transfer between the disk and memory

• Typically set as a config parameter for the DBMS.

• Typical value between 4 KBytes to 32 KBytes.

• Frame – a unit of memory

• Typically the same size as the Disk Page Size

• Buffer Pool – a collection of frames used by the DBMS to
temporarily keep data for use by the query processor.

• Note: sometime use the term “buffer” and “frame” synonymously.

 22

Question
Suppose we did not maintain dirty bit and always
assumed the page was dirty. This would require
modifying the algorithm. The result would be

1) slower

2) more prone to failure

3) both A and B

4) none of the above

 23

pollev.com/cosc460

Instructions: I will give
you 1-2 minutes to think
on your own.
Vote 1.
Then you will discuss w/
neighbor (1 min).
Vote 2.
Then we’ll discuss as
class.

Replacement Policies
(details shown on board)

 24

