COSC 460 Lecture 21: Map Reduce

Instructor: Michael Hay Fall 2018

Credits: Slides adapted from Franklin, Miklau, and Kot

Recap: Programming Model

- Borrows from functional programming (note: ideas from Haskell, etc. but not implemented in Haskell)
- Users implement two functions ([...] denotes list)

 $map (k, v) \rightarrow [(k', v')]$

- map() takes single input key-value pair and produces one or more intermediate results: (output key, value) pairs
- after map phase over, system combines all the intermediate values for a given output key together into a list.

reduce $(k', [v']) \rightarrow [v'']$

 reduce() combines intermediate values into one or more final values for that output key

let's look at python version

Exercises

- Input: a relation of web logs
 - Key: tuple_id, Value: (ipaddr, url, category, timestamp)

Tasks

- 1. Urls that have at least V visits (entries in log)
- 2. Categories that have at least S distinct urls
- 3. Categories that have at least S urls with at least V visits each (hint: may require multiple rounds of map-reduce)

Exercises

- Input: a friends relation Friend(user, friend)
 - Key: tuple_id, Value: tuple (u,f)
- Tasks
 - 1. For each user, number of friends
 - 2. Set of pairs *(u, fof)* where u is a user and fof is a friend of a friend
 - 3. For each (u,f) pair, the number of mutual friends (hint: may require multiple rounds of map-reduce)

Exercises

- Input: a relation of numbers R(x)
 - Key: tuple_id, Value: x
- Tasks
 - 1. Largest number
 - 2. select AVG(x) from R
 - 3. select x, COUNT(x) from R group by x
 - 4. select count(distinct x) from R

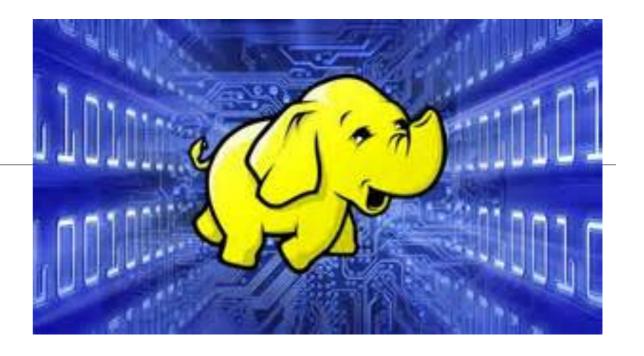
Map Reduce Implementation

- System setup
 - Data is stored using a distributed file system.
 - Computations parallelized over many machines.
- Key concerns
 - Coordination
 - Fault-tolerance
 - Data distribution, especially "shuffling" data from map to reduce
 - Load balancing

Hadoop

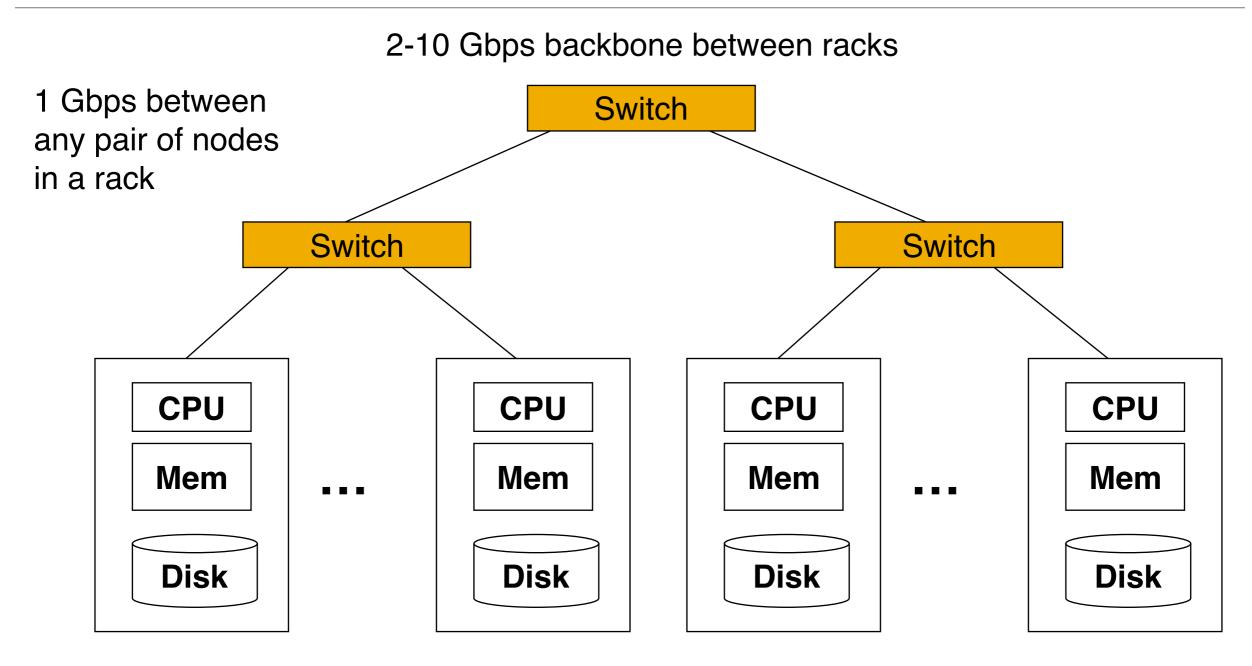
- An open-source implementation in Java
- Uses HDFS for stable storage
- Download: <u>http://lucene.apache.org/hadoop/</u>

Hadoop (2005?...)



- Open-source project initiated by Cutting and Cafarella
- In 2010 Facebook claimed that they had the largest Hadoop cluster in the world with 21 PB of storage. (1 PB = 1000 TB)
- On July 27, 2011 announced growth to 30 PB.
- On June 13, 2012 announced growth to 100 PB.
- On November 8, 2012 announced warehouse grows by roughly half a PB per day.

Cluster Architecture



Each rack contains 16-64 nodes

In 2011 it was guestimated that Google had 1M machines, http://bit.ly/Shh0RO

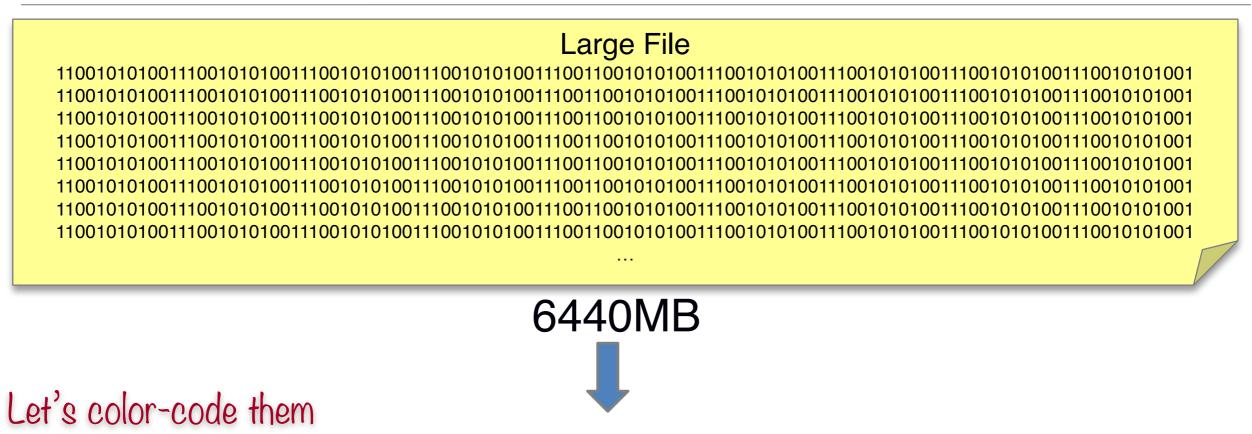
Storage Infrastructure

- Problem:
 - If nodes fail, how to store data persistently?
- Answer: Distributed File System:
 - Provides global file namespace
 - Google GFS; Hadoop HDFS;

Hadoop Distributed File System

- Underpinnings of the entire Hadoop ecosystem
- Traditional hierarchical file organization: directories and files
- Highly portable
- HDFS properties:
 - Scalable to 1000s of nodes
 - Assume failures (hardware and software) are common
 - Can store very large files
 - Append only workloads: Write once, read multiple times

File Splits



Files are composed of set of blocks

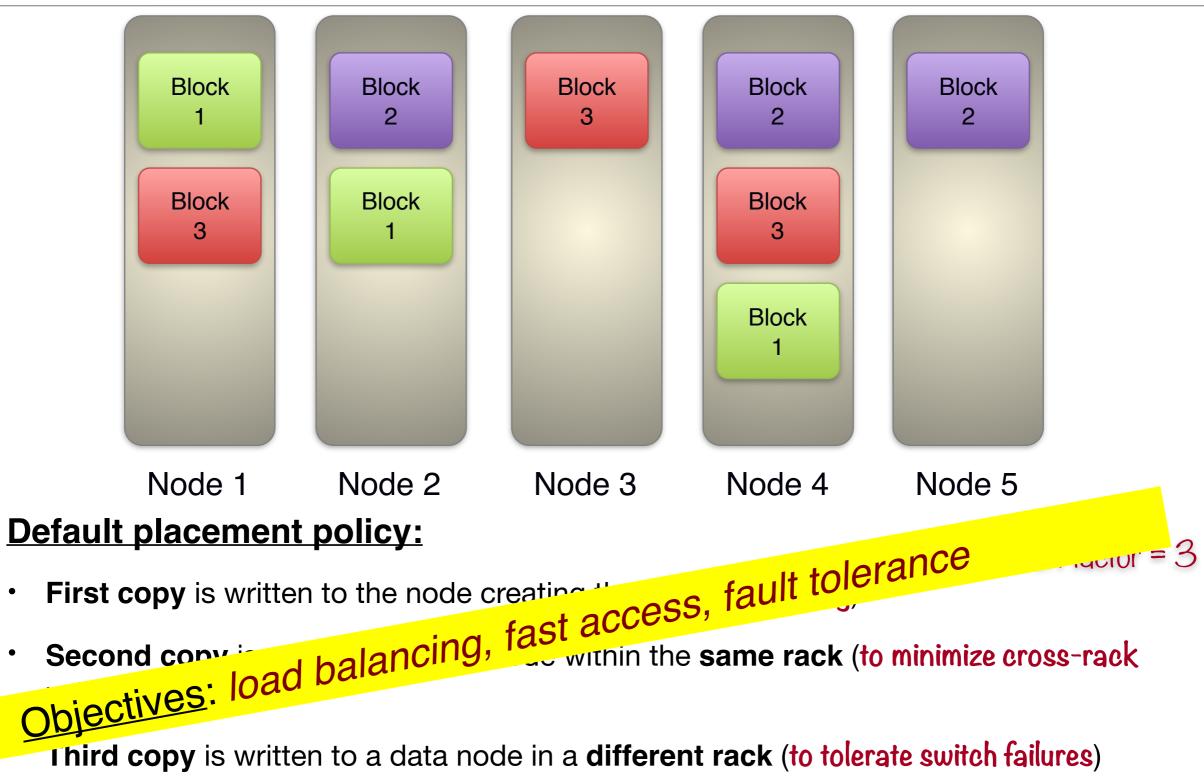
Typically 64MB in size

 Each block is stored as a separate file in the local file system of a node

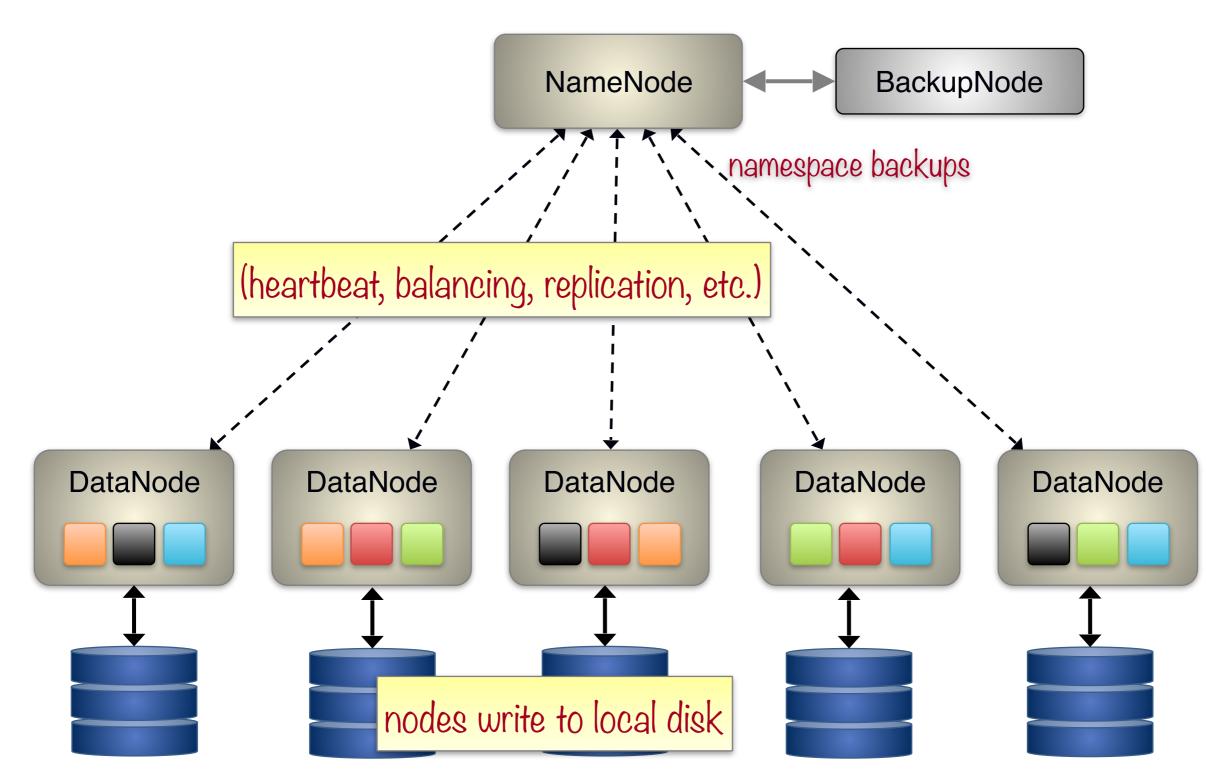
e.g., Block Size = 64MB

Block Placement

•

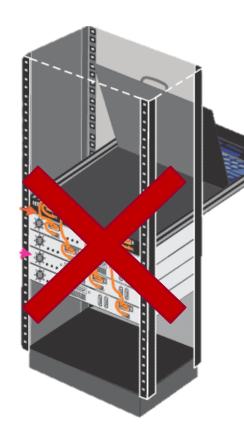


HDFS Architecture



Failures, Failures, Failures

 HDFS was designed with the expectation that failures (both hardware and software) would occur frequently

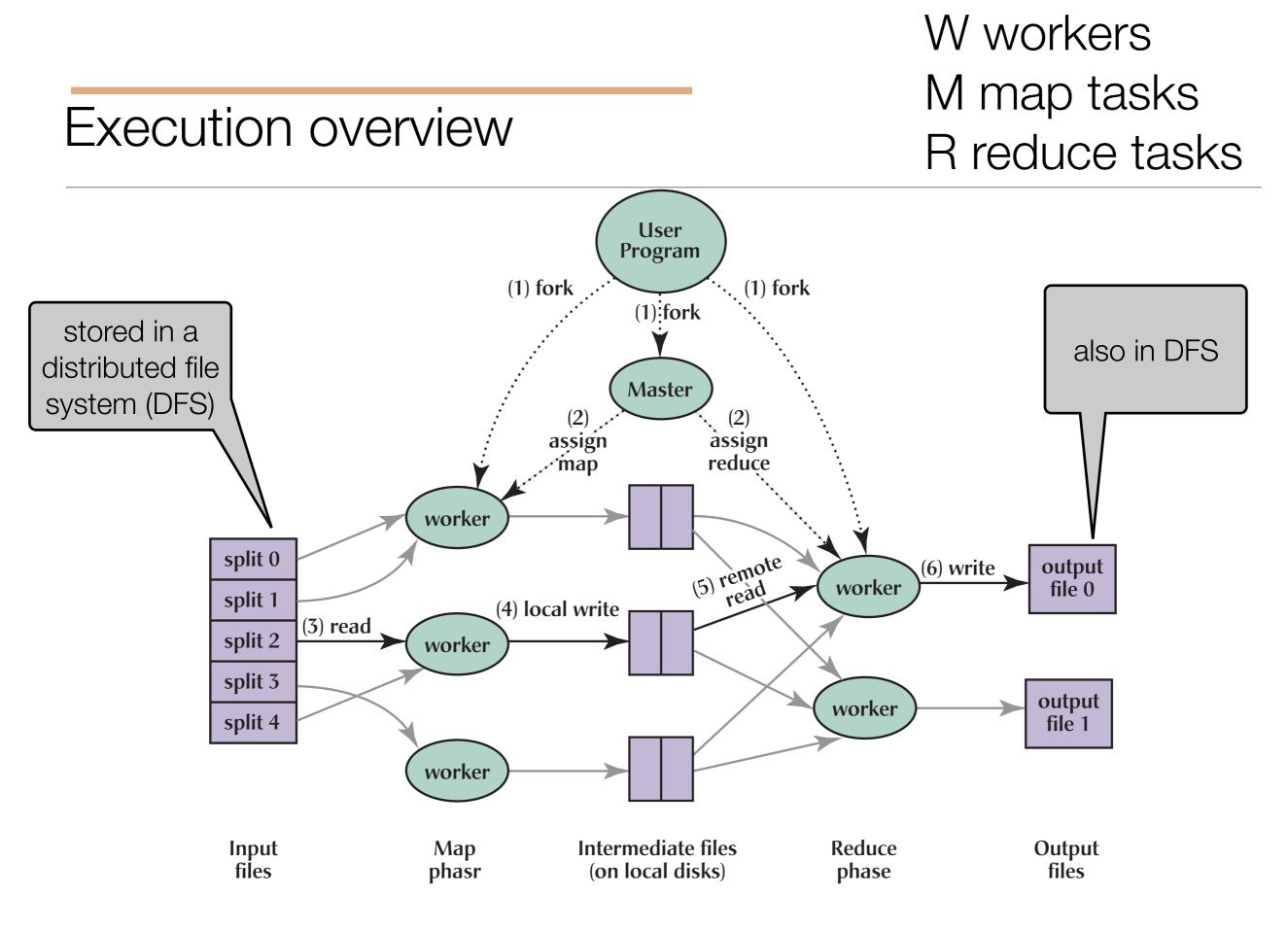


- Failure types:
 - Disk errors and failures
 - DataNode failures
 - Switch/Rack failures
 - NameNode failures
 Datacenter failures

Map-Reduce: Environment

Map-Reduce environment takes care of:

- Partitioning the input data across machines (DFS)
- Scheduling the program's execution across a set of machines (tasks and workers)
- Performing the group by key step (using "shuffle" and sort)
- Handling machine failures
- Managing required inter-machine communication



Instructions: ~1 minute to think/ answer on your own; then discuss with neighbors; then I will call on one of you

Suppose a given map reduce job has M map tasks and R reduce tasks and there are W workers available. How many intermediate files are created?

What information does master need to keep track of?

Key concerns

- Coordination
- Fault-tolerance
 - one or more machines may fail during computation
- Data distribution
 - especially "shuffling" data from map to reduce
- Load balancing

Coordination: Master

- Master node takes care of coordination:
 - Task status: (idle, in-progress, completed)
 - Idle tasks get scheduled as workers become available
 - When a map task completes, it sends the master the location and sizes of its *R* intermediate files, one for each reducer
 - Master pushes this info to reducers

Master pings workers periodically to detect failures

Dealing with Failures

- Map worker failure*
 - Map tasks reset to idle if in-progress or completed (why?)
 - Reduce workers are notified when map task is executed by another worker (which they can ignore in some cases — see "stragglers").
- Reduce worker failure
 - Only in-progress tasks are reset to idle (why not complete?)
 - Reduce task is restarted
- Master failure
 - MapReduce task is aborted and client is notified

* failure = master not getting timely response, worker may still be working! system must handle workers that "come back from the dead"

How many Map and Reduce jobs?

- M map tasks, R reduce tasks, W workers
- Rules of thumb:
 - Make M much larger than the number of workers
 - One DFS chunk per map is common
 - Improves dynamic load balancing and speeds up recovery from worker failures
 - Make R small multiple of W
 - Final output is spread across R files
- Common numbers at Google: M=200,000, R=5,000 using 2,000 worker machines.

Task Granularity & Pipelining

- Fine granularity tasks: map tasks >> machines
 - Minimizes time for fault recovery
 - Can do pipeline shuffling with map execution
 - Better dynamic load balancing

Example: M=3, R=2

Process	Time>									
User Program	MapReduce()			wait						
Master	Assign tasks to worker machines									
Worker 1		Map 1	Map 3							
Worker 2		Map 2								
Worker 3			Read 1.1	Read 1.3		Read 1.2		Redu	ice 1	
Worker 4			Read 2.1			Read 2.2	Read	d 2.3	Redu	uce 2

Fault tolerance: "Stragglers"

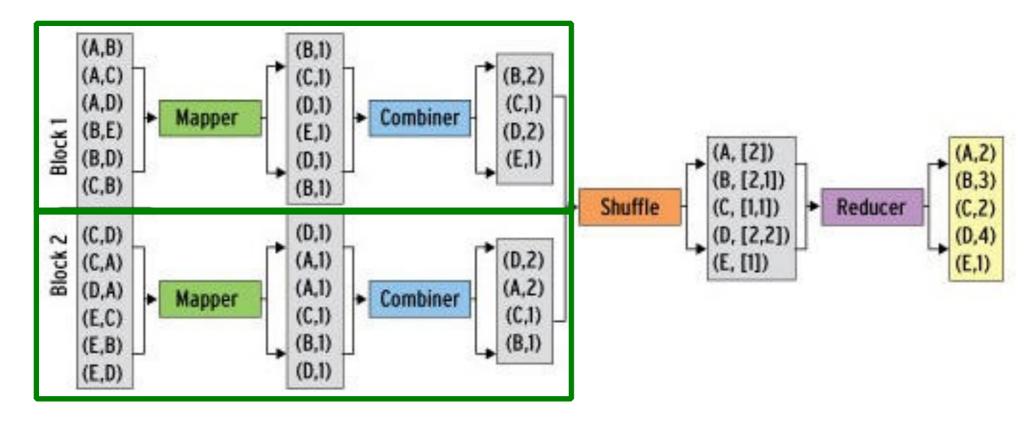
- Problem: Slow workers significantly lengthen the job completion time:
- Causes for slowness:
 - Other jobs on the machine
 - Bad disks
 - Weird things
- Solution
 - Near end of phase, spawn backup copies of tasks
 - Whichever one finishes first "wins" (idempotence!)
- Effect
 - Dramatically shortens job completion time

Issues

- Synchronization barrier
 - Reduce function cannot be applied until all map tasks have finished (why?)
 - Other systems allow asynchronous computation
- Data skew
 - When some keys appear many many times (word count: "the")
 - Load unevenly distributed across reduce workers

Refinement: Combiners

• Combiner: combines the values of all keys of a single mapper (single machine). Combiner often same as reducer function. Back to our word counting example:



- Much less data needs to be copied and shuffled!
- Works when reduce function is associative and commutative
- Improves load balancing (somewhat) for reduce workers

Instructions: ~1 minute to think/ answer on your own; then discuss with neighbors; then I will call on one of you

Suppose we execute word count program on large collection of documents (WWW) with M map tasks and R reduce tasks. (Recall how data is sent from map tasks to reduce tasks.)

- 1. Suppose no combiner used and R=10,000. Do you expect significant skew?
- Suppose no combiner used and R=10.
 Do you expect significant skew?
- Suppose we use combiner and R=10,000.
 Do you expect significant skew?

Dealing with Data skew

- Combiners
 - Map worker combines all values for given key.
- Hashing
 - Recall that map worker hashes intermediate results
 - Reduce worker takes one hash bucket (contains many keys)
 - While key distribution may be skewed, bucket size distribution may be closer to uniform
- Set R larger than W (# workers)
 - Avg. tasks per worker: R/W
 - Worker with skew may do 1 task, others may do > R/W tasks

Resources

Hadoop Wiki

jsmapreduce.com

- Introduction
 - <u>http://wiki.apache.org/lucene-hadoop/</u>
- Getting Started
 - <u>http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop</u>
- Map/Reduce Overview
 - <u>http://wiki.apache.org/lucene-hadoop/HadoopMapReduce</u>
 - <u>http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses</u>
- Eclipse Environment
 - <u>http://wiki.apache.org/lucene-hadoop/EclipseEnvironment</u>
- Javadoc
 - <u>http://lucene.apache.org/hadoop/docs/api/</u>