
COSC 460 Lecture 21: 
Map Reduce

Instructor: Michael Hay 
Fall 2018

Credits: Slides adapted from Franklin, Miklau, and Kot



Recap: Programming Model

• Borrows from functional programming (note: ideas from Haskell, etc. 
but not implemented in Haskell)


• Users implement two functions  ( [ … ] denotes list )


map (k, v) → [(k', v')]

• map( ) takes single input key-value pair and produces one 

or more intermediate results: (output key, value) pairs

• after map phase over, system combines all the intermediate 

values for a given output key together into a list.

reduce (k', [v']) → [ v'' ]

• reduce( ) combines intermediate values into one or more 

final values for that output key

!2let’s look at python version



Exercises

• Input: a relation of web logs


• Key: tuple_id, Value: (ipaddr, url, category, timestamp) 

• Tasks


1. Urls that have at least V visits (entries in log)


2. Categories that have at least S distinct urls


3. Categories that have at least S urls with at least V visits each 
(hint: may require multiple rounds of map-reduce)

�3



Exercises

• Input: a friends relation Friend(user, friend)


• Key: tuple_id, Value: tuple (u,f) 

• Tasks


1. For each user, number of friends


2. Set of pairs (u, fof) where u is a user and fof is a friend of a 
friend


3. For each (u,f) pair, the number of mutual friends (hint: may 
require multiple rounds of map-reduce)

�4



Exercises

• Input: a relation of numbers R(x)


• Key: tuple_id, Value: x 

• Tasks


1. Largest number


2. select AVG(x) from R


3. select x, COUNT(x) from R group by x


4. select count(distinct x) from R

�5



Map Reduce Implementation

• System setup


• Data is stored using a distributed file system.


• Computations parallelized over many machines.


• Key concerns 


• Coordination


• Fault-tolerance


• Data distribution, especially “shuffling” data from map to reduce


• Load balancing

�6



adapted from J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Hadoop

• An open-source implementation in Java

• Uses HDFS for stable storage

• Download: http://lucene.apache.org/hadoop/

�7

http://www.mmds.org
http://lucene.apache.org/hadoop/


Hadoop (2005?…)

• Open-source project initiated by Cutting and Cafarella 
• In 2010 Facebook claimed that they had the largest Hadoop 
cluster in the world with 21 PB of storage.  (1 PB = 1000 TB) 

• On July 27, 2011 announced growth to 30 PB. 
• On June 13, 2012 announced growth to 100 PB. 
• On November 8, 2012 announced warehouse grows by 
roughly half a PB per day.

�8
adapted from Mike Franklin, Berkeley



J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

�9



adapted from J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Cluster Architecture

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Each rack contains 16-64 nodes

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Switch1 Gbps between 
any pair of nodes
in a rack

2-10 Gbps backbone between racks

In 2011 it was guestimated that Google had 1M machines, http://bit.ly/Shh0RO 
�10

http://www.mmds.org
http://bit.ly/Shh0RO
http://bit.ly/Shh0RO


Storage Infrastructure

• Problem:


• If nodes fail, how to store data persistently? 


• Answer: Distributed File System:


• Provides global file namespace


• Google GFS; Hadoop HDFS;

�11
adapted from J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

http://www.mmds.org


Hadoop Distributed File System 

• Underpinnings of the entire Hadoop ecosystem

• Traditional hierarchical file organization: directories and files

• Highly portable 

• HDFS properties:


• Scalable to 1000s of nodes

• Assume failures (hardware and software) are common

• Can store very large files

• Append only workloads: Write once, read multiple times

�12
adapted from Mike Franklin, Berkeley



File Splits

�13

Large File
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001

…

6440MB

Block 
1

Block 
2

Block 
3

Block 
4

Block 
5

Block 
6

Block 
100

Block 
101

64MB 64MB 64MB 64MB 64MB 64MB

…

64MB 40MB

Block 
1

Block 
2

Let’s color-code them
Block 

3
Block 

4
Block 

5
Block 

6
Block 
100

Block 
101

e.g., Block Size = 64MB
    Files are composed of set of blocks 

• Typically 64MB in size 
• Each block is stored as a separate file in the 

local file system of a node
adapted from Mike Franklin, Berkeley



Block Placement

• Default placement policy:

• First copy is written to the node creating the file (write affinity)


• Second copy is written to a data node within the same rack (to minimize cross-rack 
network traffic)


• Third copy is written to a data node in a different rack (to tolerate switch failures)
�14

Node 5Node 4Node 3Node 2Node 1

Block 
1

Block 
3

Block 
2

Block 
1

Block 
3

Block 
2

Block 
3

Block 
2

Block 
1

e.g., Replication factor = 3

Objectives: load balancing, fast access, fault tolerance

adapted from Mike Franklin, Berkeley



HDFS Architecture

�15

NameNode BackupNode

DataNode DataNode DataNode DataNode DataNode

(heartbeat, balancing, replication, etc.)

nodes write to local disk

namespace backups

adapted from Mike Franklin, Berkeley



• HDFS was designed with the expectation that failures (both 
hardware and software) would occur frequently

•   Failure types:

• Disk errors and failures

• DataNode failures

• Switch/Rack failures

• NameNode failures

• Datacenter failures

Failures, Failures, Failures

�16

NameNode

DataNode

adapted from Mike Franklin, Berkeley



Map-Reduce: Environment

Map-Reduce environment takes care of:


• Partitioning the input data across machines (DFS)


• Scheduling the program’s execution across a  
set of machines (tasks and workers)


• Performing the group by key step (using “shuffle” and sort)


• Handling machine failures


• Managing required inter-machine communication

�17
adapted from J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

http://www.mmds.org


Execution overview

�18

MapReduce: Simplified Data Processing on Large Clusters

7. When all map tasks and reduce tasks have been completed, the mas-
ter wakes up the user program. At this point, the MapReduce call
in the user program returns back to the user code.

After successful completion, the output of the mapreduce execution
is available in the R output files (one per reduce task, with file names
specified by the user). Typically, users do not need to combine these R
output files into one file; they often pass these files as input to another
MapReduce call or use them from another distributed application that
is able to deal with input that is partitioned into multiple files.

3.2 Master Data Structures
The master keeps several data structures. For each map task and
reduce task, it stores the state (idle, in-progress, or completed) and the
identity of the worker machine (for nonidle tasks).

The master is the conduit through which the location of interme-
diate file regions is propagated from map tasks to reduce tasks. There -
fore, for each completed map task, the master stores the locations and
sizes of the R intermediate file regions produced by the map task.
Updates to this location and size information are received as map tasks
are completed. The information is pushed incrementally to workers
that have in-progress reduce tasks.

3.3 Fault Tolerance
Since the MapReduce library is designed to help process very large
amounts of data using hundreds or thousands of machines, the library
must tolerate machine failures gracefully.

Handling Worker Failures
The master pings every worker periodically. If no response is received
from a worker in a certain amount of time, the master marks the worker
as failed. Any map tasks completed by the worker are reset back to their
initial idle state and therefore become eligible for scheduling on other
workers. Similarly, any map task or reduce task in progress on a failed
worker is also reset to idle and becomes eligible for rescheduling.

Completed map tasks are reexecuted on a failure because their out-
put is stored on the local disk(s) of the failed machine and is therefore
inaccessible. Completed reduce tasks do not need to be reexecuted
since their output is stored in a global file system.

When a map task is executed first by worker A and then later exe-
cuted by worker B (because A failed), all workers executing reduce
tasks are notified of the reexecution. Any reduce task that has not
already read the data from worker A will read the data from worker B.

MapReduce is resilient to large-scale worker failures. For example,
during one MapReduce operation, network maintenance on a running
cluster was causing groups of 80 machines at a time to become unreach-
able for several minutes. The MapReduce master simply re executed the
work done by the unreachable worker machines and continued to make
forward progress, eventually completing the MapReduce operation.

Semantics in the Presence of Failures
When the user-supplied map and reduce operators are deterministic
functions of their input values, our distributed implementation pro-
duces the same output as would have been produced by a nonfaulting
sequential execution of the entire program.

split 0

split 1

split 2

split 3

split 4

(1) fork

(3) read
(4) local write

(1) fork
(1) fork

(6) write

worker

worker

worker

Master

User
Program

output
file 0

output
file 1

worker

worker

(2)
assign
map

(2)
assign
reduce

(5) remote 

(5) read

Input
files

Map
phasr

Intermediate files
(on local disks)

Reduce
phase

Output
files

Fig. 1. Execution overview.

COMMUNICATIONS OF THE ACM January  2008/Vol. 51, No. 1 109

J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. Communications of the ACM, 51(1):107–113, 2008.

stored in a 
distributed file 
system (DFS)

also in DFS

W workers 
M map tasks 
R reduce tasks



Intermediate results

Suppose a given map reduce job has M 
map tasks and R reduce tasks and there 
are W workers available.  How many 
intermediate files are created?   

What information does master need to 
keep track of?

 19

Instructions: ~1 minute to think/
answer on your own; then discuss with 
neighbors; then I will call on one of you



Key concerns

• Coordination


• Fault-tolerance


• one or more machines may fail during computation


• Data distribution


• especially “shuffling” data from map to reduce


• Load balancing

�20



Coordination: Master

• Master node takes care of coordination: 

• Task status: (idle, in-progress, completed)


• Idle tasks get scheduled as workers become available


• When a map task completes, it sends the master the location 
and sizes of its R intermediate files, one for each reducer


• Master pushes this info to reducers


• Master pings workers periodically to detect failures

�21
adapted from J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

http://www.mmds.org


Dealing with Failures

• Map worker failure*


• Map tasks reset to idle if in-progress or completed (why?)


• Reduce workers are notified when map task is executed by another 
worker (which they can ignore in some cases — see “stragglers”).


• Reduce worker failure


• Only in-progress tasks are reset to idle (why not complete?)


• Reduce task is restarted


• Master failure


• MapReduce task is aborted and client is notified

�22
adapted from J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

* failure = master not getting timely response, worker may still be working!  
system  must handle workers that “come back from the dead”

http://www.mmds.org


How many Map and Reduce jobs?

• M map tasks, R reduce tasks, W workers


• Rules of thumb:


• Make M much larger than the number of workers


• One DFS chunk per map is common


• Improves dynamic load balancing and speeds up recovery 
from worker failures


• Make R small multiple of W


• Final output is spread across R files


• Common numbers at Google: M=200,000, R=5,000 using 2,000 
worker machines.

�23
adapted from J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

http://www.mmds.org


Task Granularity & Pipelining

• Fine granularity tasks:  map tasks >> machines


• Minimizes time for fault recovery


• Can do pipeline shuffling with map execution


• Better dynamic load balancing 

�24
adapted from J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Example: M=3, R=2

http://www.mmds.org


Fault tolerance: “Stragglers”

• Problem: Slow workers significantly lengthen the job completion time:

• Causes for slowness:


• Other jobs on the machine

• Bad disks

• Weird things


• Solution

• Near end of phase, spawn backup copies of tasks


• Whichever one finishes first “wins” (idempotence!)

• Effect

• Dramatically shortens job completion time

�25
adapted from J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

http://www.mmds.org


Issues

• Synchronization barrier


• Reduce function cannot be applied until all map tasks have 
finished (why?)


• Other systems allow asynchronous computation


• Data skew


• When some keys appear many many times (word count: “the”)


• Load unevenly distributed across reduce workers

�26



Refinement: Combiners

• Combiner: combines the values of all keys of a single mapper (single machine).  
Combiner often same as reducer function.  Back to our word counting example:


• Much less data needs to be copied and shuffled!


• Works when reduce function is associative and commutative


• Improves load balancing (somewhat) for reduce workers

�27
adapted from J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

http://www.mmds.org


Data skew

Suppose we execute word count program on large 
collection of documents (WWW) with M map tasks and 
R reduce tasks.  (Recall how data is sent from map 
tasks to reduce tasks.) 

1. Suppose no combiner used and R=10,000.  Do you 
expect significant skew? 

2. Suppose no combiner used and R=10.   
Do you expect significant skew? 

3. Suppose we use combiner and R=10,000.   
Do you expect significant skew?

 28

Instructions: ~1 minute to think/
answer on your own; then discuss with 
neighbors; then I will call on one of you



Dealing with Data skew

• Combiners


• Map worker combines all values for given key.


• Hashing


• Recall that map worker hashes intermediate results


• Reduce worker takes one hash bucket (contains many keys)


• While key distribution may be skewed, bucket size distribution 
may be closer to uniform 


• Set R larger than W (# workers)


• Avg. tasks per worker: R/W 


• Worker with skew may do 1 task, others may do > R/W tasks
�29



J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Resources

• Hadoop Wiki

•  Introduction


•  http://wiki.apache.org/lucene-hadoop/

•  Getting Started


•  http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop

•  Map/Reduce Overview 


•  http://wiki.apache.org/lucene-hadoop/HadoopMapReduce

•  http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses


•  Eclipse Environment

• http://wiki.apache.org/lucene-hadoop/EclipseEnvironment


•  Javadoc

•  http://lucene.apache.org/hadoop/docs/api/	

�30

jsmapreduce.com

http://wiki.apache.org/lucene-hadoop/
http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop
http://wiki.apache.org/lucene-hadoop/HadoopMapReduce
http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses
http://wiki.apache.org/lucene-hadoop/EclipseEnvironment
http://lucene.apache.org/hadoop/docs/api/
http://jsmapreduce.com

