
COSC 460 Lecture 3:
Data Storage

Professor Michael Hay
Fall 2018

Credits: Slides adapted from Gehrke 1

Fixed-length record format

• Typically, all records in same file have same schema

• Information about schema stored in System Catalog

• To access ith field, use arithmetic

 2

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2

Variable-length record
format

• Two alternative formats

 3

$ $ $ $

Fields Delimited by Special Symbols

F1 F2 F3 F4

F1 F2 F3 F4

Array of Field Offsets

• Comparison?

Delimiter
approach

Offsets
approach

Poll: free space
Suppose page is as drawn on board. The space marked
“unused” is 30 bytes and the space marked “free” is 12 bytes.
What is the largest variable-length record you can add….  
(1) without compacting and (2) with compacting?

A. 12 w/o compacting; 30 w/ compacting

B. 12 w/o compacting; 42 w/ compacting

C. 30 w/o compacting; 30 w/ compacting

D. 30 w/o compacting; 42 w/ compacting

E. None of above

 4

Instructions: I will
give you 1-2 minutes
to think on your own.
Vote 1.
Then you will discuss
w/ neighbor (1 min).
Vote 2.
Then we’ll discuss as
class.

Correct answer: B.pollev.com/cosc460

Heap File Implemented as
List

• Page id of header page stored in System Catalog

• Page format: requires space for 2 “pointers” (page ids)

 5

Header
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page Pages with

Free Space

Full Pages

Heap File Using Page
Directory

• Page id of first directory page stored in System Catalog

• Directory page format: directory entries <page id, # free bytes>,
plus “pointer” (page id) for next directory page

 6

Data
Page 1

Data
Page 2

Data
Page N

Header
Page

DIRECTORY

Poll: heap
Suppose you have variable-length records and you implement Heap
File using the linked list approach. Assume buffer pool is empty and
the Heap File has N pages. To insert a tuple, how many pages must
be read from disk? Consider the best- and worst-case possibilities:

A. Best: 1 page; Worst: 2 pages

B. Best: 1 page; Worst: N pages

C. Best: 2 pages; Worst: N/2 pages

D. Best: 2 pages; Worst: N pages

E. Best: N/2 pages; Worst: N pages

 7

Header
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page Pages with

Free Space

Full Pages

Instructions: I will
give you 1-2 minutes
to think on your own.
Vote 1.
Then you will discuss
w/ neighbor (1 min).
Vote 2.
Then we’ll discuss as
class.

Correct answer: D.

Heap File: List vs. Directory
• Linked list approach

• Simple to implement

• Efficient for fixed-length records: header + first free page

• Directory

• More complex to implement (linked list of header pages)

• Better support for variable-length records: directory can
report available space on each free page.

• Must keep directory data up to date

 8

Alternative format: store data by
“column” rather than by “row”

 9

C-Store: A Column-oriented DBMS

Mike Stonebraker∗, Daniel J. Abadi∗, Adam Batkin+, Xuedong Chen†, Mitch Cherniack+,

Miguel Ferreira∗, Edmond Lau∗, Amerson Lin∗, Sam Madden∗, Elizabeth O’Neil†,
Pat O’Neil†, Alex Rasin‡, Nga Tran+, Stan Zdonik‡

∗MIT CSAIL

Cambridge, MA
+Brandeis University

Waltham, MA

†UMass Boston
Boston, MA

‡Brown University
Providence, RI

Abstract

This paper presents the design of a read-optimized
relational DBMS that contrasts sharply with most
current systems, which are write-optimized.
Among the many differences in its design are:
storage of data by column rather than by row,
careful coding and packing of objects into storage
including main memory during query processing,
storing an overlapping collection of column-
oriented projections, rather than the current fare of
tables and indexes, a non-traditional
implementation of transactions which includes high
availability and snapshot isolation for read-only
transactions, and the extensive use of bitmap
indexes to complement B-tree structures.
We present preliminary performance data on a

subset of TPC-H and show that the system we are
building, C-Store, is substantially faster than
popular commercial products. Hence, the
architecture looks very encouraging.

1. Introduction
Most major DBMS vendors implement record-oriented

storage systems, where the attributes of a record (or tuple)
are placed contiguously in storage. With this row store
architecture, a single disk write suffices to push all of the
fields of a single record out to disk. Hence, high
performance writes are achieved, and we call a DBMS
with a row store architecture a write-optimized system.
These are especially effective on OLTP-style applications.

In contrast, systems oriented toward ad-hoc querying
of large amounts of data should be read-optimized. Data
warehouses represent one class of read-optimized system,

in which periodically a bulk load of new data is
performed, followed by a relatively long period of ad-hoc
queries. Other read-mostly applications include customer
relationship management (CRM) systems, electronic
library card catalogs, and other ad-hoc inquiry systems. In
such environments, a column store architecture, in which
the values for each single column (or attribute) are stored
contiguously, should be more efficient. This efficiency
has been demonstrated in the warehouse marketplace by
products like Sybase IQ [FREN95, SYBA04], Addamark
[ADDA04], and KDB [KDB04]. In this paper, we discuss
the design of a column store called C-Store that includes a
number of novel features relative to existing systems.

With a column store architecture, a DBMS need only
read the values of columns required for processing a given
query, and can avoid bringing into memory irrelevant
attributes. In warehouse environments where typical
queries involve aggregates performed over large numbers
of data items, a column store has a sizeable performance
advantage. However, there are several other major
distinctions that can be drawn between an architecture that
is read-optimized and one that is write-optimized.

Current relational DBMSs were designed to pad
attributes to byte or word boundaries and to store values in
their native data format. It was thought that it was too
expensive to shift data values onto byte or word
boundaries in main memory for processing. However,
CPUs are getting faster at a much greater rate than disk
bandwidth is increasing. Hence, it makes sense to trade
CPU cycles, which are abundant, for disk bandwidth,
which is not. This tradeoff appears especially profitable in
a read-mostly environment.

There are two ways a column store can use CPU cycles
to save disk bandwidth. First, it can code data elements
into a more compact form. For example, if one is storing
an attribute that is a customer’s state of residence, then US
states can be coded into six bits, whereas the two-
character abbreviation requires 16 bits and a variable
length character string for the name of the state requires
many more. Second, one should densepack values in
storage. For example, in a column store it is
straightforward to pack N values, each K bits long, into N
* K bits. The coding and compressibility advantages of a

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy otherwise,
or to republish, requires a fee and/or special permission from the
Endowment
Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

Column-Stores vs. Row-Stores: How Different Are They

Really?

Daniel J. Abadi
Yale University

New Haven, CT, USA

dna@cs.yale.edu

Samuel R. Madden
MIT

Cambridge, MA, USA

madden@csail.mit.edu

Nabil Hachem
AvantGarde Consulting, LLC

Shrewsbury, MA, USA

nhachem@agdba.com

ABSTRACT
There has been a significant amount of excitement and recent work
on column-oriented database systems (“column-stores”). These
database systems have been shown to perform more than an or-
der of magnitude better than traditional row-oriented database sys-
tems (“row-stores”) on analytical workloads such as those found in
data warehouses, decision support, and business intelligence appli-
cations. The elevator pitch behind this performance difference is
straightforward: column-stores are more I/O efficient for read-only
queries since they only have to read from disk (or from memory)
those attributes accessed by a query.

This simplistic view leads to the assumption that one can ob-
tain the performance benefits of a column-store using a row-store:
either by vertically partitioning the schema, or by indexing every
column so that columns can be accessed independently. In this pa-
per, we demonstrate that this assumption is false. We compare the
performance of a commercial row-store under a variety of differ-
ent configurations with a column-store and show that the row-store
performance is significantly slower on a recently proposed data
warehouse benchmark. We then analyze the performance differ-
ence and show that there are some important differences between
the two systems at the query executor level (in addition to the obvi-
ous differences at the storage layer level). Using the column-store,
we then tease apart these differences, demonstrating the impact on
performance of a variety of column-oriented query execution tech-
niques, including vectorized query processing, compression, and a
new join algorithm we introduce in this paper. We conclude that
while it is not impossible for a row-store to achieve some of the
performance advantages of a column-store, changes must be made
to both the storage layer and the query executor to fully obtain the
benefits of a column-oriented approach.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query processing, Re-

lational databases

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-102-6/08/06 ...$5.00.

General Terms
Experimentation, Performance, Measurement

Keywords
C-Store, column-store, column-oriented DBMS, invisible join, com-
pression, tuple reconstruction, tuple materialization.

1. INTRODUCTION
Recent years have seen the introduction of a number of column-

oriented database systems, including MonetDB [9, 10] and C-Store [22].
The authors of these systems claim that their approach offers order-
of-magnitude gains on certain workloads, particularly on read-intensive
analytical processing workloads, such as those encountered in data
warehouses.

Indeed, papers describing column-oriented database systems usu-
ally include performance results showing such gains against tradi-
tional, row-oriented databases (either commercial or open source).
These evaluations, however, typically benchmark against row-orient-
ed systems that use a “conventional” physical design consisting of
a collection of row-oriented tables with a more-or-less one-to-one
mapping to the tables in the logical schema. Though such results
clearly demonstrate the potential of a column-oriented approach,
they leave open a key question: Are these performance gains due

to something fundamental about the way column-oriented DBMSs

are internally architected, or would such gains also be possible in

a conventional system that used a more column-oriented physical

design?

Often, designers of column-based systems claim there is a funda-
mental difference between a from-scratch column-store and a row-
store using column-oriented physical design without actually ex-
ploring alternate physical designs for the row-store system. Hence,
one goal of this paper is to answer this question in a systematic
way. One of the authors of this paper is a professional DBA spe-
cializing in a popular commercial row-oriented database. He has
carefully implemented a number of different physical database de-
signs for a recently proposed data warehousing benchmark, the Star
Schema Benchmark (SSBM) [18, 19], exploring designs that are as
“column-oriented” as possible (in addition to more traditional de-
signs), including:

• Vertically partitioning the tables in the system into a collec-
tion of two-column tables consisting of (table key, attribute)
pairs, so that only the necessary columns need to be read to
answer a query.

• Using index-only plans; by creating a collection of indices
that cover all of the columns used in a query, it is possible

1

Columnar storage especially
good for data analytics

Poll: clock
Which of the following is true about the clock replacement
approach? In answers below, “recently used” means
used at some point after the last page eviction.

A. Recently used pages have ref bit set to 1

B. It never chooses most recently used page

C. A and B

D. None of above

 10

Instructions: I will give you 1-2 minutes to
think on your own.
Vote 1.
Then you will discuss w/ neighbor (1 min).
Vote 2.
Then we’ll discuss as class.

Correct answer: A.

DB

MAIN MEMORY

DISK

disk page

free frame

BUFFER POOL

choice of frame dictated
by replacement policy

Architecture of DBMS

