
COSC 460 Problem Set #10 Fall 2018

See course website for instructions and due date.

1. In a recent class you completed a worksheet analyzing the performance of external merge sort.
(Solutions to this worksheet are on moodle.) These two questions reference the pseudocode
algorithm shown on the worksheet.

(a) Suppose in the sort phase, only one page is read at a time and thus each page is initially
assigned to its own separate run file. What is the total cost of this modified external merge
sort? (In other words, I’m not just asking about the cost of the sort phase but asking you to
consider how this modification in the sort phase may also affect the cost of later phases.)

Solution: The output of the sort phase would be N run files (one per page) rather
than

⌈
N
B

⌉
run files. Thus, the total cost would be: 2N(1 +

⌈
logB−1 N

⌉
)

In more practical terms, if we only sort individual pages in the sort phase, it costs one
round additional round of merging in the merge phase: logB−1 N ≈ 1 + logB−1

⌈
N
B

⌉
.

(b) Suppose the sort phase is as described on the worksheet but in the merge phase, only two
run files are merged at a time. What is the total cost of this modified external merge sort?

Solution: Total cost: 2N(1 +
⌈
log2

⌈
N
B

⌉⌉
)

(c) Suppose B is fixed to some constant (say, 100) but N is very, very large. Which of the
above variants has lower I/O cost?

Solution: The first one. The comparison is between roughly (1 +
⌈
logB−1

⌈
N
B

⌉⌉
) vs⌈

log2

⌈
N
B

⌉⌉
) and the former is much smaller for B = 100 and large N.

(d) Assume the algorithm is as described on the worksheet. Given a table with N pages, how
much memory is necessary to sort the page in two passes? By two passes, I mean the first
pass is a sort and the second pass consists of one round of merging. Your answer should
be a function of N, such as N

2 ,
√

N, log N, and it can be approximate.

Solution: There are k run files after the sort phase. We require that all k can be
merged into a single file. Thus k

B−1 ≤ 1 and since k =
⌈

N
B

⌉
, that implies N ≤ B(B− 1).

In other words, to sort a table of size N in two passes, you need roughly
√

N memory.

2. Consider the join R ./R.a=S .b S , given the following information about the relations to be joined.
The cost metric is the number of page I/Os unless otherwise noted, and the cost of writing out
the result should be ignored – however, have at least one buffer page to store the output!

• Relation R contains 20,000 tuples and has 10 tuples per page. Relation S contains 5,000
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tuples and also has 10 tuples per page. Attribute S.b is the primary key for S.

• Both relations are stored as simple heap files, and neither relation has any indexes.

• Unless otherwise specified, 42 buffer pages are available.

(a) What is the cost of (simple) nested loops join? Assume R is the outer relation.

Solution: Let NR = 2000 be the number of pages in R, NS = 500 be the number of
pages in S .

Cost is lower when the smaller relation, S , is the outer relation.

Cost is NR + NR ∗ pR ∗ NS = 2000 + (2000 ∗ 10 ∗ 500) = 10, 002, 000.

(b) What is the cost of block nested loops join? Choose as the outer relation whichever
relation leads to lower cost.

Solution: Cost of option two is cheaper with S as outer relation: NS +
⌈

NS
M−2

⌉
∗ NR =

500 + 13 ∗ 2000 = 26, 500.

(c) Consider the merge phase of the sort-merge join. In class, we discussed how the cost of
merge is variable, and the worst-case cost is much higher than the best-case. Given that
S .b is a key for S , what is the worst-case cost for the merge phase? Briefly explain.

Solution: The worst case cost of the merge is NR + NS = 2500.

Because S .b is a key, we know that each group of tuples in R matches at most one
tuple of S . Therefore, in completing the merge step, we need only look at each tuple
of each relation only once. (If S .b were not a key, it might be necessary to perform a
nested loops join to match multiple tuples of S with multiple tuples of R.) Since it’s a
key, we know that we can complete the merge in a single pass through each relation.

(d) Consider a join of R and S using hashing. Is the buffer large enough to perform in-
memory joins following hashing? Assume the hash function is perfect (keys are evenly
distributed), there is no data skew (distribution of key values in data is uniform), further
assume that a hash table on k pages requires only k pages of space (in practice it’s a little
bigger).

Solution: Yes!

Number of hash partitions H = B − 1. Size of each partition assuming perfect hash:
dNR/B − 1e = d2000/41e = 49. Thus, the partitions of R will be too big to fit in
memory. However, the partitions of S can fit in memory: dNS /B − 1e = d500/41e =
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13. When joining partition Ri with S i, we only need one of the two partitions to fit in
memory.

(e) For the given R and S , what is the minimum number of buffer pages needed to achieve a
minimum cost hash join? Give an exact number. Make the same assumptions as in part
(d).

Solution: Need partitions of smaller relation S to fit in memory. Let H be the number
of hash partitions.

We have two constraints H ≤ B − 1 to write out the partitions and dNS
H e ≤ B − 2 so

that we can fit each partition of S into memory with a block for R and another block
for the output.

We want H to be as large as possible (the more hash partitions, the better). So let’s
set H = B − 1. Now thinking about the constraint that dNS

H e ≤ B − 2, we can ignore
the ceiling and we get NS ≤ (B − 2)(B − 1) ≈ (B − 1)2. The smallest integer B that
satisfies this is B = 23.

Since we were hand-wavy, double check that B is correct.

If B = 22, then dNS
H e = 24 which is too big!

If B = 23, then dNS
H e = 23 which is too big!

If B = 24, then dNS
H e = 22 ≤ B − 2, so it is just right.
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