COSC 460 Problem set: Transactions, Recovery Fall 2018

1. For each of the following schedules, state which of the following properties hold: conflict
serializable, recoverable, cascadeless, or strict. Recall the following definitions:

A schedule is conflict serializable if its precedence graph is acyclice.

A schedule is recoverable if T; reads an item written by 7; then T; commits before T';
commits.

A schedule is cascadeless if T; reads an item written by 7; then 7; commits before T';
reads that item.

A schedule is strict if a value written by a transaction T is not read or overwritten by
other transactions until T either aborts or commits.

(a) TI:W(X), T2:R(X), T1:W(X), T2:Commit, T1:Commit

(b) T1:R(X), T2:W(X), T1:W(X), T2:Abort, T1:Commit

(c) T1:R(X), T2:W(X), T1:W(X), T2:Commit, T1:Commit

(d) T1:R(X), T2:R(X), T1:W(X), T1:Commit, T2:W(X), T2:Commit
(e) TL:W(X), T2:R(X), T1:W(X), T2:Commit, T1:Abort

(f) TI:-W(X), T2:R(Y), T1:R(Y), T2:R(X), T1:Commit, T2:Commit
(g) T1:R(X), T2:R(X), T1:Commit, T2:W(X), T2:Commit

Display your answer in the table below, indicating ‘y’ whenever the property is satisfied by
the schedule.

c-serializable recoverable cascadeless strict

Solution:

c-serializable recoverable cascadeless strict

a)

b) y y

c) y y

d) y y y
e)

£ vy y

1of 6

COSC 460

Problem set: Transactions, Recovery

Fall 2018

9)

20f6

COSC 460 Problem set: Transactions, Recovery Fall 2018

2. Consider the following sequence of log records from a database.

<T®, start>

<T®, A, ® -> 5>
<T0, B, 500 -> 100>
<T®, commit>

<Tl, start>

<T2, start>

<T1, A, 5 -> 10>
<checkpoint {T1, T2}>
<T2, B, 100 -> 200>
<T2, commit>

<T3, start>

<T3, C, 30 -> 40>
<CLR T1, A, 5>

<T1, abort>

(a) Suppose there is a crash immediately after <T1, abort> is written to the log. Illustrate
what happens during recovery following the recovery protocol described in class and also
described in the readings (p. 736-737).

Specifically, tell me the sequence of writes — to both the database and the log — that occur
when the database recovers from the crash. Use the following notation:

e WO(X, V) denotes that the value V is Written for item X and flushed Out to disk

e entries in the log can be written using the format shown above (which is similar to
that used in the book and in class).

Solution:

#redo phase

Wo(B, 200)
Wo(C, 40)
WO(CA, 5)

undo phase: T3 on undo list
<CLR T3, C, 30> # should come before WO(C,30), write ahead logc
wo(c, 30

<T3, abort>

(b) Repeat the previous question except suppose there was a crash immediately after <CLR T1, A, 5>
and therefore <T1, abort> was not written to the log.

Solution:

30f6

COSC 460 Problem set: Transactions, Recovery Fall 2018

same as above plus

<CLR T1, A, 5> # write to log first
WO(A, 5)

<T1, abort>

(c) In the above examples, the recovery phase should include WO(B, 200) even though the
log says that T2 has committed. We could make the recovery phase more efficient by not
redoing the actions of committed transactions. Is this a good idea? Briefly explain.

Solution: It’s necessary to redo unless the database applies a force policy.

If it does not use a force policy then even though T2 has committed, the database
disk block might still have been in memory when the system crashed (the DBMS
implements a no force policy); thus, the B,200 might not yet be written to the DB
disk.

(d) One advantage of checkpointing is that less work needs to be done during recovery. An-
other advantage is that it is not necessary to retain the entire log, which can take up a lot
of disk space for a long-lived database. What part of log can be discarded? Hint: the
answer is not everything before the last checkpoint.

Solution: Can delete everything before the earliest <Ti, start> for any Ti in the
checkpoint list. For this example, can delete everything above <T1, start>.

4 0f 6

COSC 460 Problem set: Transactions, Recovery Fall 2018

3. Consider the following sequence of log records.

()

<T2, start>

<T2, B, 5 -> 10>

<T1l, start>

<T1, A, 10 -> 20>
<checkpoint {T1, T2}>
<T2, A, 20 -> 30>
<CLR T2, A 20>

<CLR T1, A 10>

<T1l, abort>

Illustrate what happens during recovery. Use the same notation as with the previous
problem

Solution:

#redo phase from checkpoint

WOo(CA, 30)
WO(CA, 20)
WO(CA, 10)

undo phase: T2 on undo list
<CLR T2, A, 20>

WOCA, 20)
<CLR T2, B, 5>
WOo(B, 5)

<T2, abort>

(b) The recovery protocol leaves the database in an inconsistent state. What are the values of

A and B after recovery? If recovery was done correctly what would the values of A and B
be?

Solution: A = 20 but it should be 10. B = 5 and that’s fine. The problem is that there
was a crash during recovery and T1 was written as aborted but T2 was not. This is a
problem because T2 modified A after T1.

(c) The reason for the inconsistency is that recovery protocol makes an assumption about

database modifications and that assumption does not hold above sequence. What is the
assumption? (See p. 736 from the Boat book reading)

Solution: A “data item that has been updated by an uncommitted transaction cannot
be modified by any other transaction, until the first transaction has either committed
or aborted.”

50f6

COSC 460 Problem set: Transactions, Recovery Fall 2018

(d) Explain why the log sequence above can never happen under strict 2PL.

Solution: T1 released the lock on A before committing!

6 of 6

